
ART I C L E

Optimal allocation of resources among general and
species-specific tools for plant pest biosecurity surveillance

Hoa-Thi-Minh Nguyen1 | Long Chu1 | Andrew M. Liebhold2,3 |

Rebecca Epanchin-Niell4 | John M. Kean5 | Tom Kompas6 |

Andrew P. Robinson7 | Eckehard G. Brockerhoff8 | Joslin L. Moore9,10

1Crawford School of Public Policy, Australian National University, Canberra, Australian Capital Territory, Australia

2USDA Forest Service Northern Research Station, Morgantown, West Virginia, USA

3Czech University of Life Sciences, Faculty of Forestry and Wood Sciences, Prague, Czech Republic

4Department of Agricultural and Resource Economics, University of Maryland, College Park, Maryland, USA

5AgResearch Limited, Ruakura Science Centre, Hamilton, New Zealand

6Centre of Excellence for Biosecurity Risk Analysis, School of Biosciences and School of Ecosystem and Forest Sciences, University of Melbourne,
Melbourne, Victoria, Australia

7Centre of Excellence for Biosecurity Risk Analysis, Schools of Biosciences and Mathematics and Statistics, University of Melbourne, Melbourne,
Victoria, Australia

8Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Birmensdorf, Switzerland

9Arthur Rylah Institute for Environmental Research, Department of Energy, Environment and Climate Action, Heidelberg, Victoria, Australia

10School of Biological Sciences, Monash University, Clayton, Victoria, Australia

Correspondence
Hoa-Thi-Minh Nguyen
Email: hoa.nguyen@anu.edu.au

Funding information
Better Border Biosecurity (B3),
New Zealand; Centre of Excellence for
Biosecurity Risk Analysis; Science,
Research, and Education, Czech
Operational Programme, Grant/Award
Number: EVA4.0
CZ.02.1.01/0.0/0.0/16_019/0000803; The
Australian Research Council’s Discovery
Projects, Grant/Award Number:
DP160100745

Handling Editor: Jeff R. Garnas

Abstract

This paper proposes a surveillance model for plant pests that can optimally

allocate resources among survey tools with varying properties. While some

survey tools are highly specific for the detection of a single pest species, others

are more generalized. There is considerable variation in the cost and sensitivity

of these tools, but there are no guidelines or frameworks for identifying which

tools are most cost-effective when used in surveillance programs that target

the detection of newly invaded populations. To address this gap, we applied

our model to design a trapping surveillance program in New Zealand for bark-

and wood-boring insects, some of the most serious forest pests worldwide. Our

findings show that exclusively utilizing generalized traps (GTs) proves to be

highly cost-effective across a wide range of scenarios, particularly when they

are capable of capturing all pest species. Implementing surveillance programs

that only employ specialized traps (ST) is cost-effective only when these traps

can detect highly damaging pests. However, even in such cases, they signifi-

cantly lag in cost-effectiveness compared to GT-only programs due to their

restricted coverage. When both GTs and STs are used in an integrated
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surveillance program, the total expected cost (TEC) generally diminishes when

compared to programs relying on a single type of trap. However, this relative

reduction in TEC is only marginally larger than that achieved with GT-only

programs, as long as highly damaging species can be detected by GTs. The pro-

portion of STs among the optimal required traps fluctuates based on several

factors, including the relative pricing of GTs and STs, pest arrival rates, poten-

tial damage, and, more prominently, the coverage capacity of GTs. Our analy-

sis suggests that deploying GTs extensively across landscapes appears to be

more cost-effective in areas with either very high or very low levels of relative

risk density, potential damage, and arrival rate. Finally, STs are less likely to

be required when the pests that are detected by those tools have a higher like-

lihood of successful eradication because delaying detection becomes less costly

for these species.

KEYWORD S
bark- and wood-boring insects, general traps, optimal surveillance, plant pest,
specialized traps, survey tools

INTRODUCTION

As part of national biosecurity programs, many countries
allocate considerable resources to preborder and border
measures to prevent the accidental introduction of
potentially damaging nonnative species (Hulme, 2011).
Preborder biosecurity encompasses preventive measures
targeting populations before they reach the border. These
measures include prohibitions on the importation of spe-
cific plants or commodities, certifications verifying that
imported materials are free of prohibited organisms, and
phytosanitary treatments (Nahrung et al., 2023). On the
other hand, border biosecurity entails inspection, detec-
tion tools, phytosanitary measures, and diagnostics to
identify invasive species (Nahrung et al., 2023). However,
certain invasion pathways are challenging to control. As a
result, even with comprehensive border biosecurity mea-
sures, some new species may still arrive and establish.

In this context, effective surveillance, paired with eradi-
cation, becomes pivotal in national biosecurity programs.
These actions are integral to postborder biosecurity, which
also includes containment and pest management (Nahrung
et al., 2023). The coupling of surveillance with eradication
is also termed “early detection, rapid response” (Reaser
et al., 2020). The classic strategy applied in these programs
is to survey broad areas to detect and delimit new nascent
populations in order to locate them for extirpation
(Liebhold et al., 2016; van Havre & Whittle, 2015;
Westbrooks, 2004). Conducting large-scale surveillance pro-
grams can be cumbersome and expensive. Thus, careful
planning of such efforts can significantly influence their
cost-effectiveness (Epanchin-Niell, 2017; Kean et al., 2015).

Many studies have been conducted to search for
biosecurity surveillance design strategies that achieve
improved economic efficiency. Some studies have
focused on the development of specific tools such as
remote sensing (Rocchini et al., 2015), molecular detec-
tion (Simmons et al., 2016), and semiochemical traps
(Poland & Rassati, 2019) that provide increased sensitiv-
ity for the detection of individual species across large
landscapes. Other studies have recognized an inherent
trade-off in the allocation of resources between spending
on survey and eradication versus methods devised for
allocation between these actions (Bogich et al., 2008;
Horie et al., 2013). Several studies have focused on the
spatial allocation of surveillance intensity across land-
scapes to optimize invasive species detection and
eradication (Epanchin-Niell et al., 2012; Hauser &
McCarthy, 2009; Hester & Cacho, 2012; Kompas
et al., 2016; Nguyen et al., 2021).

Another fundamental challenge in devising efficient
surveillance/eradication strategies lies in the integration
of surveillance programs among multiple species. In
many cases, separate surveillance programs exist for indi-
vidual target species within the same region, but combin-
ing these efforts into a single coordinated program could
result in greater efficiency (Epanchin-Niell et al., 2014;
Jarrad et al., 2011). This integration is challenging in part
because different invading species may vary in their habi-
tat requirements, invasion pathways, and impacts. More-
over, the detectability of different species can vary across
survey methods. For example, various types of traps are
typically used in surveillance programs that target insect
pest species. Some types of traps are baited with lures
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that can survey multiple species (Brockerhoff et al., 2006;
Kerr et al., 2017; Rabaglia et al., 2019). Compounds such
as α-pinene and ethanol are attractive to a variety of
bark- and wood-boring insects and can be used to simul-
taneously survey for a large number of species (Miller &
Rabaglia, 2009; Sweeney et al., 2007). However, some
of these same species may also be attracted to highly
species-specific pheromones and can be used in traps to
only detect individual species (Meier et al., 2016; Miller &
Borden, 2000). Designing a unified surveillance program
for detecting multiple invasive species poses challenges
in resource allocation between highly specialized versus
generalized survey methods.

Across countries, the implementation of surveillance
programs varies significantly. European Union member
countries, for instance, primarily use specialized survey
tools, as they are mandated to survey a number of regu-
lated pests. Generic traps are typically employed when no
species-specific traps exist for a target (e.g., an unidentified
pheromone) or for optional generic surveillance. This
requirement likely arises from the presumption of predict-
ability regarding which species will establish or be espe-
cially damaging. However, predicting such occurrences is
challenging, and most species invasions are unexpected.
Likely because of this, other countries prefer using more
generic traps. Examples include the EDRR program in the
United States (Rabaglia et al., 2019) and trap networks in
New Zealand (Brockerhoff et al., 2006) and Italy (Rassati
et al., 2015). Yet, tools that assist policymakers in determin-
ing whether to adopt species-specific traps, generic traps, or
a blended approach to surveillance are scarcely existent.

In this light, we propose a model for optimizing the
allocation of resources among species-specific and gener-
alized survey tools for the surveillance and eradication of
invading species. We ask whether species-specific survey
tools are required given the prevalent use of the generalized
ones (e.g., Brockerhoff et al., 2006; Rabaglia et al., 2019)
and, if required, what the optimal combination would
be. The model presented here optimizes total net benefits,
accounting for both surveillance costs and discounted
impacts anticipated following species establishment.
We demonstrate the applicability of this optimization
approach for the surveillance of bark- and wood-boring
insects, which is typically accomplished using networks
of attractant-baited traps (Brockerhoff et al., 2006; Rassati
et al., 2015). In some programs, these traps are baited
with host compounds (e.g., ethanol and α-pinene) that
are attractive to a range of bark- or wood-boring insect
species (Rabaglia et al., 2019). Alternatively, higher-
sensitivity species-specific lures are available for some
species, and these are used for species-specific surveil-
lance programs. We apply our optimization model to the
previously developed analysis by Epanchin-Niell et al. (2014)

for the optimal allocation of resources for surveillance
(i.e., postborder survey) for the presence of populations of
bark- and wood-boring insects in New Zealand. Specifi-
cally, the insects are Scolytinae (bark and ambrosia
beetles), Cerambycidae (longhorn beetles), and
Siricidae (woodwasps). Our work differs from existing
literature in that it provides an optimization frame-
work that simultaneously optimizes the allocation of
different survey tools (i.e., types of trap in this case)
used for the surveillance of multiple target species.

THE MODEL

Our model considers two trade-offs in surveillance
against pests simultaneously. The first one is the choice
between early and late detection. Here, a decision needs
to be made as to how much to spend on detecting pests
early so that eradication can be implemented to prevent fur-
ther loss or damage. The second trade-off is the choice
between different kinds of surveillance devices (i.e., traps).
Some devices can detect one or a small number of pests
with high sensitivity, while others attract a broader range of
species, but at the expense of sensitivity.

We formalize our model in a way that facilitates the
use of expert opinions. The reason is that estimating bio-
logical and economic parameters from data, especially
those involved with uncertainty, is a challenging and
ongoing task. Thus, we chose functional forms that mini-
mize the required parameters without compromising
the model’s rigor and practical purpose when possible.
Mathematics is expressed in the formula that is best
suited with an intuitive explanation of parameters and
the accompanying technical assumptions.

We first explain the notation and define the time
horizon. We then delineate the modeling components for
a single pest. Finally, we extend this framework to
multipest–multitrap settings and describe some decision-
making problems that this framework can address.

NOTATION AND TIME HORIZON

In the model description, we use uppercase letters for
numerical parameters and lowercase letters for func-
tions, subscripts, and superscripts. We use superscripts
to distinguish categories of variables, such as types of
costs or probabilities. On the other hand, we use sub-
scripts to index variables in different sets, such as a set
of time, a set of pests, or a set of traps. The mathemat-
ics is specified in such a way that all numerical param-
eters have nonnegative values unless indicated
otherwise.
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Time in the model is discrete (i.e., t¼ 0,1,2…). Traps
are established at time t¼ 0, and the project spans over T
years, from t¼ 1 to t¼T.

SINGLE-PEST SETTING

Dynamics of pest population

We largely follow Epanchin-Niell et al. (2014) in model-
ing the dynamics of pest species invasion. In particular,
we denote by x s, tð Þ the number of isolated populations
that are s years old at time t, that is, the populations
established at time t− s that have remained undetected
since then. We further denote by pdet s,Dð Þ the detection
probability given trap density D, which could be a vector
if there is more than one type of trap, and the age of the
population s. The dynamics of undetected populations
can be formalized as follows:

x 1, t+1ð Þ¼ b tð Þ with t¼ 0,1…T − 1, ð1Þ

x s, t+1ð Þ¼ x s− 1, tð Þ 1− pdet s− 1,Dð Þ� �
with

s¼ 2…Smax and t¼ 0,1…T − 1,
ð2Þ

where b tð Þ is the arrival rate at time t, and Smax is the
maximum age of a population. To this end, the number,
location, and spatial extent of pest populations at any
point in time are unknown prior to detection.

Likewise, the dynamics of detected population z s, tð Þ
can be formalized in the form

z 1, t+1ð Þ¼ 0 with t¼ 0,1…T − 1, ð3Þ

z s, t+1ð Þ¼ z s− 1, tð Þ+ x s− 1, tð Þ× pdet s− 1,Dð Þ� �
× 1− erad s− 1ð Þper s− 1ð Þ½ �
with s¼ 2…T and t¼ 0,1…T − 1,

ð4Þ

where erad sð Þ is a dummy variable that takes a value of
1 when it is optimal to eradicate a population of age s
and a value of zero otherwise; per sð Þ is the probability
that an eradication campaign will be successful if it is
chosen to occur.

Pest spread

Following Epanchin-Niell et al. (2014), we assume that a
pest population occupies an increasingly large circular
area over time, and its spread follows a sigmoid function
that allows for an initially accelerating rate of radial popu-
lation range growth that eventually asymptotes at a rate g.

Under this assumption, the annual change in the radius
of a population is given by gsm= hm + smð Þ, where s is the
size class (or, equivalently, the age) of the population, g is
the asymptotic radial rate of population growth, m is a
shape parameter, and h is the time at which half the
asymptotic rate of growth is achieved. We employ a
shape parameter m¼ 5 and half-time value h¼ 10, fol-
lowing Epanchin-Niell et al. (2014).

Eradication cost

We denote by ce sð Þ the cost of eradicating a population of
age s. A function that presents ce sð Þ needs to have two
mathematical properties, (1) ce sð Þ≥ 0 and (2) ∂ce sð Þ

∂s >0.
These properties ensure that the eradication cost will be
nonnegative and will rise as a population area increases.
Many mathematical equations have these two properties,
including

ce sð Þ¼Ce0 × a sð ÞCe

, ð5Þ

where Ce0 is a positive constant, a sð Þ is the size of the
population at age s, Ce is the elasticity of the eradication
cost with respect to the population area, or if the popula-
tion area increases by 1%, the eradication cost will
increase by Ce percent.

Probability of eradication success

Should eradication be chosen, the probability of success
would either decrease or stay the same with the size of a
population, a sð Þ, and, thus, the age s. In light of this
assumption, the probability of successful eradication
per sð Þ needs to satisfy the two properties including (1)
per sð Þ� 0,1½ � and (2) ∂per sð Þ

∂s ≤ 0.
We choose a commonly used logit model that uses the

cumulative density function of the logistic distribution

per sð Þ¼ ew

1+ ewð Þ , where w¼ β0 + β1ln a sð Þð Þ, ð6Þ

of which β1 should be negative to satisfy the two preced-
ing assumptions.

Pest population damage

We assume that there is no damage if there is no popula-
tion. On the other hand, the damage increases with popu-
lation size. Bearing this in mind, a function representing
the annual damage cd sð Þ needs to satisfy the two
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properties cd 0ð Þ¼ 0 and ∂cd sð Þ
∂s >0. The most intuitive and

simplest function satisfying these properties is probably
in the form

cd sð Þ¼Cd × a sð Þ, ð7Þ

where Cd is the damage per hectare caused by the pest
population.

Following Epanchin-Niell et al. (2014), the population
damage will accumulate until it is successfully eradicated
or it reaches its maximum age of an infestation, beyond
which the damage stays constant. Thus, cnoer, the cumu-
lative damage of a population of age s if it remains
noneradicated, can be calculated as the present value of
all future damage as follows:

cnoer sð Þ¼
XSmax − s

t¼1

cd s+ tð Þ
1+Γð Þt , ð8Þ

where Γ is an interest rate.

When to eradicate?

A decision to eradicate a detected population needs
to consider a trade-off. Eradication, if successful, will
prevent cumulative damage, cnoer sð Þ. However, it will
incur an up-front cost, ce sð Þ, and the probability of
successful eradication, per sð Þ, may be less than one.
Thus, eradication should be chosen when the expected
avoided cumulative damage is greater than the cost, in
the form

erad sð Þ¼ 1: ce sð Þ< per sð Þ× cnoer sð Þ½ �, ð9Þ

where the Boolean function 1:ðÞ returns a value of 1 if
the eradication cost is less than the avoided damage, and
zero otherwise.

MULTIPEST–MULTITRAP DESIGN
AND DETECTION PROBABILITY

Design of trapping programs for
multiple pests

Suppose there are M types of trapping devices (indexed
as m¼ 1…M) and N pests (indexed as n¼ 1…N). We
denote by Smn the sensitivity of type-m trap to type-n pest
or the probability that trap m will detect a population of
pest n when the pest is located in its neighborhood. Trap
m is considered a generalized trap (GT) if Smn >0 for all

or most n� 1…Nf g. On the other hand, it is considered
species-specific if Smn >0 with only one or a
few n� 1…Nf g.

We denote by A the area of the pest surveillance
region and by Dm the density of trap m. Assuming a spa-
tially random distribution of pest population establish-
ments, the detection probability in Equation (2) can
be extended to reflect the multipest–multitrap setting as
follows:

pdetn s,Dð Þ¼ 1−
YM
m¼1

1− Smnmin
an sð Þ
A

,1

� �� �DmA
" #

,

ð10Þ

where a subscript n is added to refer to the pest type.

Cost of trapping programs

The cost of a trapping program is twofold. The first cost
is the cost of establishing a trapping program:

Cstart Dð Þ¼Cstart-prog-oh

+
XM
m¼1

Cstart-trap-oh
m ×1: Dm >0ð Þ+Cstart-trap

m DmA
� �

,

ð11Þ

where Cstart-prog-oh is the overhead cost of the whole
program, which does not depend on how many types of
trap will be used (e.g., the cost of a program manage-
ment unit does not normally vary with the trap
quantity); Cstart-trap-oh

m is the overhead cost of a type-m
trap subprogram, if any, which is incurred only if
decision makers choose to use the type-m trap (i.e., when
Dm >0); and Cstart-trap

m is the marginal cost of using each
type-m trap, which will vary with the type-m trap
quantity.

The second cost is the ongoing monitoring and main-
tenance cost of a trap:

Cog D, tð Þ¼Cog-prog-oh tð Þ

+
XM
m¼1

Cog-trap-oh
m tð Þ× 1: Dm >0ð Þ+Cog-trap

m tð ÞDmA
� �

,

ð12Þ

where Cog-prog-oh tð Þ is the annual overhead cost of the
whole trapping program, Cog-trap-oh

m tð Þ is the annual over-
head cost of the type-m trap subprogram if any, and
Cog-trap
m is the marginal cost of monitoring and

maintaining each trap.
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Total expected cost

The total expected cost TEC Dð Þ, which depends on the
trapping density, has four components:

TEC Dð Þ¼ Cstart Dð Þ|fflfflfflfflffl{zfflfflfflfflffl}
start-up cost

+
XT
t¼1

Cog D, tð Þ
1+Γð Þt|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

on-going cost

+
XT
t¼1

XN
n¼1

XSmax

s¼1

xn s, tð Þ+ zn s, tð Þ½ �cdn sð Þ
1+Γð Þt|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

cumulative damage

+
XT
t¼1

XN
n¼1

XSmax

s¼1

xn s, tð Þpdetn s,Dð Þeradn sð Þcen sð Þ
1+Γð Þt|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

cumulative eradication cost

+
XN
n¼1

XSmax

s¼1

cnoern sð Þ xn s,T +1ð Þ+ zn s,T +1ð Þ½ �
1+Γð ÞT +1|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

residual cost

,

ð13Þ

where the first two terms represent, respectively, the
startup and ongoing costs of the surveillance program;
the third and fourth terms capture, respectively, the dam-
age and eradication cost, while the final term, “residual”
cost, covers all damage after the program ends (i.e., at
time T) for a particular period. It is worth noting that all
costs are in present value and summed up over time,
pest, and population ages.

The decision-making problem

The decision-making problem is to choose the density of
all trap types, that is, D� D1,D2,…Dm½ �, so that the total
expected cost of a surveillance program is minimized:

min
D≥ 0

TEC Dð Þ: ð14Þ

We solved this problem using a nonlinear programming
solver (i.e., fmincon) in MATLAB version R2020a.

EMPIRICAL APPLICATION: MODEL
PARAMETERIZATION

We apply our model to design an optimal network of
traps to detect invasions of bark- and wood-boring
insect species in New Zealand. These insects complete
their larval development in the bark, phloem, or
xylem of living or recently dead woody plants

(Dodds et al., 2023; Lieutier et al., 2004). Prominent
taxa include Scolytinae, Cerambycidae, Buprestidae,
Siricidae, and others. Our model parameters can be clas-
sified under four categories: general, pest-related, trap-
ping cost, and trap sensitivity parameters. All values
discussed in this application are in 2011 US dollars,
unless otherwise specified.

General parameters

The baseline values of the general parameters and their
ranges for sensitivity analysis are presented in Appendix S1:
Table S1. We consider a 30-year time horizon for the sur-
veillance program and an annual interest rate of 5%.

The surveillance program covers four New Zealand
port regions: Auckland, Tauranga, Wellington, and
Christchurch. Together, these regions receive approxi-
mately 90% of the trade volume that poses the greatest
risk for invasions of bark- or wood-boring insects
(Epanchin-Niell et al., 2014). The trapping program
discussed in this paper predominantly targets 20% of the
urban areas in these regions, which we estimate would
detect about 80% of future invaders. This assumption is
made based on the widespread understanding that high-
risk sites are typically clustered around ports, including
industrial and commercial zones where imports are
unloaded. Hence, we anticipate these regions to experi-
ence a higher concentration of new invasions in the
future. The percentage pertaining to areas and invaders
considered here is anchored in the findings of Epanchin-
Niell et al. (2014). We direct readers to their work for a
comprehensive sensitivity analysis of this assumption. In
our paper, we accept this assumption as a base premise
and focus our investigation on determining the optimal
allocation of various trap types within a trapping
program.

Pest-related parameters

Appendix S2 presents the pest-related parameter values,
with a summary provided in Section S1, Table S1. In the
baseline, the arrival rate is 0.065 introductions per year,
which is based on historical data from 1980 to 2011 for
New Zealand (Epanchin-Niell et al., 2014). Considering
the potential substantial uncertainty surrounding this
rate (Haack et al., 2014, 2022), the subsection Empirical
application: Model results examines how variations in this
rate might impact our results. Following the approach
used by Epanchin-Niell et al. (2014), we allocated
this rate proportionally to the flow of trade that is likely
to use wood packing material—the most probable
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introduction pathway of wood-boring beetles—across
four surveillance sites. Thus, Auckland, Christchurch,
Tauranga, and Wellington account for 48:7%, 9:3%,
23:0%, and 8:1% of the introduction risk, respectively.
With areas of 217, 90, 33.6, and 88.8 km2, the
corresponding shares of risk per square kilometer are 0:23%,
0:10%, 0:68%, and 0:09%. Consequently, Tauranga, the
smallest region, is also the riskiest in terms of relative
risk density. The relative risk density here is about three
times that of Auckland and seven times greater than that
of the other two regions.

We consider nine potential species classes, classified
based on two features: damage and trap responsiveness,
with each feature having three subclasses (Appendix S2:
Section S1, Table S2). We choose to delineate invasive
species based on their classes rather than as specific spe-
cies because it is difficult to know which bark- or wood-
boring insect species are most likely to establish in the
future. We assume that the features of damage and trap
responsiveness are pair-wise independent. That is, the
proportion in each species class is the product of its
proportions of each damage and trap responsiveness
subclass.

The damage caused by a species can be low, medium,
or high. We assume the baseline corresponding species
distribution based on these damage levels is 70%, 20%,
and 10%, respectively. Our assumption is based on evi-
dence from Aukema et al. (2011) for wood borers,
which suggests that the smallest fraction of new species
causes the most extensive damage, while most species
cause low damage, and a smaller proportion causes
medium damage.

The harvest value is estimated to be USD 103.12/ha/
year. This estimation is based on New Zealand’s annual
forest land harvest value of USD 1154 million (Epanchin-
Niell et al., 2014), and its total forest land area is 11.19
million ha (Landcare Research New Zealand Ltd, 2020).
Following Epanchin-Niell et al. (2014), we assume a
5-year delay before damage begins accruing in a newly
invaded forest to account for initially low population den-
sities. Following this delay, damage increases linearly in
those areas over the next 5 years to reach their maximum
reduction in harvest value in the 10th year following the
arrival of the invader. Maximum reductions in harvest
value continue until the maximum age of the population,
Smax , or until the population is eradicated. We assume
low-, medium-, and high-damage pests cause 1%, 10%,
and 50% of the total possible damage, respectively.

Likewise, there are three subclasses in trap respon-
siveness. A species can be trapped by (1) GTs, but not
specialized traps (STs) (labeled as GT species), (2) GTs
and STs (ST species), or (3) not detected by any trap types
(NT species). This classification is motivated by the fact

that most species respond to GTs, while species that
could be detected using specialist lures (STs) could also
be targeted by generalist lures. In the sensitivity analysis
presented in the subsection Empirical application: Model
results, we explore scenarios where ST species are exclu-
sively trapped by STs and the rarer scenario where there
are NT species in a population.

For the baseline, we assume that only 5% of species
are ST species, all of which are highly damaging. This
assumption takes into account the fact that species-
specific tools are only available for certain target species,
and these tend to be developed for species posing the most
significant risk of severe damage. It is worth noting that we
later explore another scenario in the subsection Empirical
application: Model results, where this 5% of ST species are
evenly distributed across all damage levels.

In practice, multiple types of specific traps may be used
concurrently and are capable of attracting one or several
species. As long as they share the same attributes—namely,
their trapping coverage, cost, and sensitivity—they are con-
sidered to be the same type from the model’s perspective.
Due to a lack of comprehensive data on the sensitivity
and cross-sensitivity ranges of various potential STs, we
have restricted our focus to one specific trap type in our
application, despite our model’s capacity to consider mul-
tiple trap types. We categorize all species that respond
exclusively to that trap type as ST species. Although we
acknowledge that the context of our application is not
perfect, we firmly believe that the insights derived remain
invaluable.

In every scenario, we assume that all low- and
medium-damage species spread at a rate of 20 km/year,
while high-damage species spread at a rate of 30 km/
year. This assumption is based on the study by Epanchin-
Niell et al. (2014), where it was determined that slower
invading species spread at a rate of 10 km/year, while
faster ones can disperse up to 50 km/year. Following
Epanchin-Niell et al. (2014), we also assume that the
maximum age of an infestation, denoted by Smax , is
75 years. We direct readers to Epanchin-Niell et al. (2014)
for a sensitivity analysis of these parameters. The maxi-
mum size of an infestation is determined by the total area
that provides suitable habitat for wood-boring beetles,
based on the land cover database for New Zealand
(Appendix S2: Section S1, Table S4).

Finally, both the eradication cost and the maximum
probability of successful eradication are functions
of population range areas. Their function coefficients
are estimated based on empirical evidence from
Brockerhoff et al. (2010) and Epanchin-Niell et al.
(2014) (see our Appendix S2B,C for more details). We
assume that the coefficients are the same for all species
classes.

ECOLOGICAL APPLICATIONS 7 of 28
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Trapping cost parameters

In the baseline, we assume the costs of GTs and STs are
the same. These costs include all expenses detailed in
Equations (11) and (12). The annual fixed cost of the
whole trapping program is USD 25,000 as in Epanchin-
Niell et al. (2014). The cost of adding a trap of both types
depends on the trap density, ranging from USD 328 to
USD 633 (Appendix S3). For the purpose of sensitivity
analysis, we accommodate a 50% increase in the cost
associated with setting up each type of trap relative to the
baseline. The implications of these cost adjustments on
the TEC of a trapping program are discussed in the
subsection Empirical application: Model results.

Trap sensitivity (or insect-capture)
parameters

GTs and STs vary not only by the range of species they
can trap and their associated cost but also by their effi-
ciency at trapping or trap sensitivity. Under our baseline
assumptions, we assign trap sensitivities of 80% to STs
and 15% to GTs. We evaluate the influence of these
assumptions on TEC of a trapping program by explor-
ing two additional scenarios: one where the ST sensi-
tivity increases to 90%, and another where the GT
sensitivity decreases to 10%. These scenarios are
discussed in the subsection Empirical application: Model
results. In the interest of thoroughness and covering a
broad range of potential parameter values, we provide in
Appendix S4: Figure S1 additional results illustrating
how the TEC and the proportion of STs required in inte-
grated programs are impacted when the sensitivity of STs
is varied from 30% to 90%.

It is important to acknowledge the complexity
involved in determining the parameter values of trap sen-
sitivity. In the absence of more concrete data, we rely on
a Poisson model of insect capture proposed by Turchin
and Odendaal (1996) for the southern pine beetle. Their
research established that a multifunnel trap baited with
frontalin and turpentine for southern pine beetle has an
effective sampling area (ESA) of ~0.1 ha. The ESA is
defined as the area by which the trap catch must be
divided to estimate the population density (Turchin &
Odendaal, 1996). To quantify the trap sensitivity, we used
the formula “1 − exp(−min(ESA, occupied area) × mean
population density within the occupied area)” as
suggested by Kean (2015) and adopted by Epanchin-Niell
et al. (2014). Notably, Epanchin-Niell et al. (2014) applied
this formula and the ESA of ~0.1 ha to justify a trap sen-
sitivity of 60%, implying an initial population density of
about 9.2 beetles/ha. The sensitivity range of 30%–90%

corresponds to 3.3–21.5 trappable beetles/hectare for this
combination of target species and trap type.

Empirical application: Model results

This section presents evidence of when an integrated
trapping surveillance program is required and optimal
combinations of GTs and STs. Our discussion centers
around the impact of establishing a trapping program
compared with the case of “do nothing” and the effect of
possibly using a single trap type versus a combination
of them. The section starts with a discussion of the base-
line results, followed by an analysis of the changes when
key model parameters vary.

Baseline

Recall that under a “do nothing” strategy, TEC simply
equals the total expected damage in the absence of pest
eradication. On the other hand, the TEC under a trap-
ping strategy has various components (Equation 13).
Here, we only present TECs and their most significant
expected cost components for brevity, namely, damage
and trapping costs. The eradication cost is negligible in
our model since eradication happens only when its bene-
fit exceeds its cost (Equation 9). Results for the baseline
scenarios are in italics (Table 1).

From the table we observe that setting up a trapping
program is economically efficient in all four sites. Single-
trap-type surveillance programs using only STs cost
63%–68% of the TEC in the case of “do nothing,” while
programs using only GTs are even more economically
efficient, costing only 11%–26% of the baseline’s TECs.
The use of integrated survey tools only marginally
reduces TECs compared with GT- only programs.
Although including STs in GT-only programs always
reduces TECs, it can either increase or decrease the total
number of traps at optimal. Trapping costs under these
programs range from 33% to 47% of the TEC.

Moreover, Table 1 reveals significant differences in
trap density among the four sites. For programs that
use only GTs, Tauranga requires about 700 traps/km2,
while Auckland requires only 317 traps/km2, and
Wellington and Christchurch require just 100 traps/km2.
Similar heterogeneity in trap density is observed for
programs that use only STs and those that include both
STs and GTs. These results suggest that the regions’ rel-
ative risk densities are positively related to their opti-
mal trap densities. Here, we use the term “risk”
synonymously with the annual rate or likelihood of
pest introduction.
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TAB L E 1 Baseline and impact of changes in annual arrival rate (b) of invasive species.

Arrival rate
Trapping

programming
Total expected

cost (USD million)
Damage

(USD millionAU)
Trap cost

(USD million)
Traps

required (traps)
Trap density
(traps/km2)

(a) Auckland (share of risk/km2 = 0.22%)

b = 0.18

Doing nothing 12,400 12,400

GT only 1482 752 729 144,348 665

ST only 7775 7592 183 36,133 166

GT and ST 1448 768 680

GT 121,156 558

ST 13,417 62

ST share 0.10

Baseline (b = 0.065)

Doing nothing 4478 4478

GT only 858 509 348 68,850 317

ST only 2900 2782 118 23,336 107

GT and ST 811 512 300

GT 44,132 203

ST 15,061 69

ST share 0.25

b = 0.0325

Doing nothing 2239 2239

GT only 541 392 148 29,227 135

ST only 1497 1423 75 14,660 67

GT and ST 516 343 173

GT 23,820 110

ST 10,194 47

ST share 0.30

(b) Tauranga (share of risk/km2 = 0.68%)

b = 0.18

Doing nothing 5856 5856

GT only 411 227 184 36,273 1080

ST only 3605 3565 40 7786 232

GT and ST 409 230 179

GT 33,875 1008

ST 1436 43

ST share 0.04

Baseline (b = 0.065)

Doing nothing 2115 2115

GT only 241 122 119 23,490 699

ST only 1324 1294 30 5779 172

GT and ST 237 125 112

GT 19,981 595

ST 2034 61

ST share 0.09

(Continues)
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TAB L E 1 (Continued)

Arrival rate
Trapping

programming
Total expected

cost (USD million)
Damage

(USD millionAU)
Trap cost

(USD million)
Traps

required (traps)
Trap density
(traps/km2)

b = 0.0325

Doing nothing 1057 1057

GT only 169 90 78 15,413 459

ST only 675 652 23 4430 132

GT and ST 163 92 70

GT 11,432 340

ST 2287 68

ST share 0.17

(c) Christchurch (share of risk/km2 = 0.1%)

b = 0.18

Doing nothing 2368 2368

GT only 409 228 182 35,846 398

ST only 1520 1464 56 10,936 122

GT and ST 391 232 159

GT 25,019 278

ST 6245 69

ST share 0.20

Baseline (b = 0.065)

Doing nothing 855 855

GT only 211 154 57 11,167 124

ST only 575 545 29 5652 63

GT and ST 203 135 68

GT 9389 104

ST 3892 43

ST share 0.29

b = 0.0325

Doing nothing 428 428

GT only 127 92 36 6943 77

ST only 297 285 11 2119 24

GT and ST 127 88 39

GT 6484 72

ST 1000 11

ST share 0.13

(d) Wellington (share of risk/km2 = 0.09%)

b = 0.18

Doing nothing 2062 2062

GT only 376 216 160 31,661 357

ST only 1330 1278 52 10,151 114

GT and ST 358 219 138

GT 21,072 237

ST 6200 70

ST share 0.23
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Finally, we observe an inverse relationship between
the risk density and the share of STs at optimal levels.
For example, Tauranga has the lowest optimal share of
STs with only 9%, followed by Auckland with 25%, while
the other two regions optimally include 28%–29% of total
traps as ST in their integrated survey programs. These
results suggest that it is more economically efficient to
blanket landscapes with GTs in high-risk areas due
to GTs’ extensive coverage.

Impact of changes in annual countrywide
arrival rate of invasive species

We began by analyzing the impact of the upper and
lower bounds of the annual countrywide arrival rate,
0.0325 and 0.18, respectively (Table 1).

Across regions, costs move in line with arrival rates.
We also observed a positive correlation between the
arrival rate and the optimal number of traps in single-
trap-type programs, as well as between the arrival rate
and the optimal number of GTs in integrated programs.

However, for STs in integrated programs, the results
are more complex. We found no consistent relationship
between the arrival rate and the numbers or shares of
STs within regions. For example, in Auckland, the opti-
mal number of STs decreased when the arrival rate either

increased or decreased. On the other hand, in Tauranga,
the area with the highest risk, the optimal number of STs
was negatively related to the arrival rate, while in the other
two regions it was positively associated with the arrival rate.

To gain a better understanding of this relationship,
we increased the level of granularity of our analysis. We
focused on the relationship between the arrival rate and
the share of STs in integrated programs, divided the
range of arrival rates ([0.18–0.032]) into 12 small steps,
and obtained the model outcome for each of them.

Figure 1 reveals three key findings. First, the share of
STs is hump-shaped with respect to the arrival rate
in Auckland, Christchurch, and Wellington. The share
increases when the rate increases, reaches its peak, and
then falls. The similarity in the lines for Christchurch
and Wellington suggests that the relative risk density
strongly influences this relationship. In Auckland, the
share reaches its peak much faster than those of less risky
regions, while there is no peak in Tauranga. These results
confirm the baseline findings that it is not economically
efficient to use STs in areas where the risk of pest entry is
either too high or too low.

Second, trapping surveillance programs become more
cost-effective as the arrival rate increases, particularly for
integrated and GT-only programs. The proportions of
TECs relative to those under the “do nothing” scenario
decrease from 0.7 to 0.6 for ST-only programs and from

TAB L E 1 (Continued)

Arrival rate
Trapping

programming
Total expected

cost (USD million)
Damage

(USD millionAU)
Trap cost

(USD million)
Traps

required (traps)
Trap density
(traps/km2)

Baseline (b = 0.065)

Doing nothing 745 745

GT only 190 140 50 9875 111

ST only 504 478 26 4939 56

GT and ST 184 123 61

GT 8616 97

ST 3324 37

ST share 0.28

b = 0.0325

Doing nothing 372 372

GT only 115 82 33 6423 72

ST only 260 251 9 1690 19

GT and ST 115 79 36

GT 5954 67

ST 1000 11

ST share 0.14

Note: “GT only” denotes a trapping program that uses only generalized traps; “GT and ST” denotes a trapping program that potentially uses both generalized
and specialized traps. The baseline results are in italics. All costs and damage are rounded to the nearest million USD.

Abbreviations: GT, generalized trap; ST, specialized trap.
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0.3 to 0.1 for other programs as the arrival rate increases
from the lower to upper bound.

Lastly, the benefit of using STs diminishes as the arrival
rate increases. This is seen in the widening gap between the
loci of proportions for the ST-only program and those of the
other two programs as the arrival rate increases. This find-
ing underscores the need to use GTs in high-risk settings.

Impact of changes in damage density

The financial cost of damage per hectare (i.e., damage
density) has a significant impact on the need for a
surveillance program. In the extreme case where dam-
age density is zero, no surveillance program is neces-
sary. To examine the impact of changes in damage
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P
ro

p
o

rt
io

n

(share of risk/km2 = 0.22%)

Auckland

Baseline

0.0

0.2

0.4

0.6

0.8

(share of risk/km2 = 0.68%)

Tauranga

Baseline

0.0

0.2

0.4

0.6

0.8

P
ro

p
o

rt
io

n

(share of risk/km2 = 0.10%)

Christchurch

Baseline

0.0
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0.8

(share of risk/km2 = 0.09%)

Wellington

GT Integrated ST TrapShare

F I GURE 1 Total expected costs (TEC) under different trapping programs relative to corresponding TEC under a “do nothing” scenario
and the share of STs in the required traps of integrated programs as the arrival rate varies. GT, GT-only surveillance programs; ST, ST-only

surveillance programs; integrated, GT- and ST-integrated programs; and TrapShare, share of STs in total required traps of an integrated

trapping program. Each point in red dashed-dotted line represents the share of STs in the total required traps of an integrated trapping

program for each value of arrival rate. Meanwhile, each point on the other three lines represents the corresponding shares of the TEC of a

corresponding trapping program compared to that under “do nothing.” The vertical bar represents the baseline scenario. The min and max

of the horizontal axis represents roughly the upper and lower bounds of the arrival rate.
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density, we analyzed a range of 0.5 to 1.5 times the
baseline damage density and divided it into 11 small
steps. We obtained model outcomes for each step to
determine the impact on the TECs of surveillance
programs.

Figure 2 shows two key insights. First, the cost sav-
ings of trapping programs relative to the “do nothing”
scenario increase as damage density increases, particu-
larly for integrated and GT-only programs. Second, there
is a hump-shaped curvature in the share of STs in the

Baseline
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damage/km2 changes relative to baseline (%)
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Christchurch

Baseline

0.0

0.2

0.4

0.6

0.8

50 60 70 80 90 100 110 120 130 140 150

damage/km2 changes relative to baseline (%)

(share of risk/km2 = 0.09%)

Wellington

GT Integrated ST TrapShare

F I GURE 2 Total expected costs (TEC) under different trapping programs relative to corresponding TEC under “do nothing” and ST

shares in the required traps of integrated programs as the damage per square kilometer varies. GT, GT-only surveillance programs; ST,

ST-only surveillance programs; integrated, GT- and ST-integrated programs; and TrapShare, share of STs in total required traps of an

integrated trapping program. Each point in the red dashed-dotted line represents the share of STs in the total required traps of an integrated

trapping program for each level of damage per square kilometer relative to baseline. Meanwhile, each point on the other three lines

represents the corresponding shares of the TEC of a corresponding trapping program compared to that under “do nothing.” The vertical bar
represents the baseline scenario. Moving to the left of the horizontal axis, the damage per square kilometer gradually reduces to the level of

50% of baseline, and moving to the right, the damage per square kilometer increases gradually to the level of 150% of baseline.
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total required traps, as can be inferred from the positive
relationship between the share of STs and damage
density in areas at low risk, such as Christchurch and
Wellington, and the corresponding inverse relationship
in Tauranga and Auckland, which are regions at high
risk. These results suggest the use of GTs when damage
density is very low or very high.

Impact of changes in trapping costs

In this subsection, we explore how the cost of STs and
GTs affects the TEC of a trapping program. It is reason-
able to assume that STs are more expensive than GTs due
to factors such as the need for a special lure and lack of
economies of scale as they can be used just for one or a
tiny number of species (Rabaglia et al., 2019). However,
the wide coverage of GTs also implies that the bycatch
in those traps can be much higher than that in STs,
resulting in higher labor costs for sorting out invasive
species. To investigate this, we simulated scenarios where
each type of trap’s cost was increased by 50% compared
to the baseline.

Table 2 presents the results of the simulations. We
observed that TECs increased when trap costs increased,
particularly for GTs. This increase was likely due to the
fact that fewer traps were used at optimal, leading to
greater damage. Additionally, as the cost of one trap type
increased, demand for that type fell while demand for the
other type increased, due to changes in their “relative”
prices.

It is worth noting that the absolute change in TEC
resulting from the shift in the trapping cost of GTs
was much larger than that of STs due to their more
extensive use. While STs are substitutable for only a
small share of species, GTs can be fully interchange-
able with STs. Therefore, their impact is more
significant.

Impact of changes in range of species that
traps can capture

The range of species that each trap type can capture is
anticipated to significantly influence model outcomes. To
explore this impact, we evaluated three scenarios.

In the first scenario, we distributed the 5% of species
that STs can capture across all damage levels, rather than
isolating them to the highly damaging subgroup as in the
baseline (Table 3). Across all sites, the TEC of ST-only
programs rose considerably, a 50% increase compared to
the baseline values. This significant increase was primar-
ily caused by the rise in damage since fewer high-damage

pests could then be captured by STs. Consequently, the
benefits of STs are outweighed by their costs, rendering
their use no longer optimal in integrated programs.

In the second scenario, we assume that GTs cannot
capture ST insects (Table 3). Predictably, the results
of ST-only programs remained the same compared with
those of the baseline as nothing changed over STs.
However, there was a marked shift in GT-only programs.
Specifically, the TEC in Tauranga, the riskiest region,
more than quadrupled, while the TEC in Auckland, the
second riskiest region, almost tripled. In the remaining
regions, the TEC more than doubled. The bulk of this
increase in TEC is attributed to the heightened damage
caused by pests that GTs can no longer lure in this
scenario. In integrated programs, there is a marginal
increase in TEC, ranging from 4% to 7%, thanks to the
optimization of the use of trap types. To this effect, we
observed the proportion of STs used escalated
significantly—nearly threefold in Tauranga and about
1.5-fold in other regions. This suggests that even minor
changes in the species range captured by GTs can lead to
substantial shifts in their demand within optimal inte-
grated programs.

In our third scenario, we reduced GT coverage by
20%, meaning that 20% of the pest population, distrib-
uted across all damage levels, could not be trapped
(i.e., the NT species). As expected, the results of single-
trap-type programs that use only STs were the same as
those in the baseline, since nothing changed in this sce-
nario. However, the impact of programs that use GTs was
significant. Specifically, TECs under those programs
increased by 65%–165%, with the magnitude of the
impact positively correlated with the region’s relative risk
density. These additional costs are mainly due to
increased damage when it is impossible to trap some
pests. In parallel, the number of required GTs and their
densities were reduced across regions by 11%–34%, while
the relative use of STs increased proportionally with
regional relative risk densities (Table 4). Specifically, the
share of STs almost doubled in Tauranga and increased
by 50% in Auckland and 20% in the other regions. Thus,
a reduction in GT coverage not only increased TECs but
also reduced the number of GTs while increasing
the number of STs required at optimal numbers due to
the change in their relative effectiveness in catching
pests.

Impact of changes in probability of
successfully eradicating ST species

The probability of successfully eradicating pests may
have a significant impact on the deployment of traps. In
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TAB L E 2 Impact of changes in trap costs.

Trap cost
Trapping
programming

Total expected
cost (USD million)

Damage
(USD million)

Trap cost
(USD million)

Traps required
(traps)

Trap density
(traps/km2)

(a) Auckland (share of risk/km2 = 0.22%) higher

ST cost 50%

Doing nothing 4478 4478

GT only 858 509 348 68,850 317

ST only 2952 2814 139 18,259 84

GT and ST 841 514 327

GT 51,772 238

ST 8552 39

ST share 0.14

Baseline

Doing nothing 4478 4478

GT only 858 509 348 68,850 317

ST only 2900 2782 118 23,336 107

GT and ST 811 512 300

GT 44,132 203

ST 15,061 69

ST share 0.25

GT cost 50% higher

Doing nothing 4478 4478

GT only 993 677 316 41,638 192

ST only 2900 2782 118 23,336 107

GT and ST 897 595 301

GT 27,527 127

ST 18,174 84

ST share 0.40

(b) Tauranga (share of risk/km2 = 0.68%)

ST cost 50% higher

Doing nothing 2115 2115

GT only 241 122 119 23,490 699

ST only 1337 1299 38 4989 148

GT and ST 240 124 117

GT 21,420 638

ST 1000 30

ST share 0.04

Baseline

Doing nothing 2115 2115

GT only 241 122 119 23,490 699

ST only 1324 1294 30 5779 172

GT and ST 237 125 112

GT 19,981 595

ST 2034 61

ST share 0.09

(Continues)
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TAB L E 2 (Continued)

Trap cost
Trapping
programming

Total expected
cost (USD million)

Damage
(USD million)

Trap cost
(USD million)

Traps required
(traps)

Trap density
(traps/km2)

GT cost 50% higher

Doing nothing 2115 2115

GT only 294 152 142 18,720 557

ST only 1324 1294 30 5779 172

GT and ST 279 156 123

GT 14,005 417

ST 3154 94

ST share 0.18

(c) Christchurch (share of risk/km2 = 0.1%)

ST cost 50% higher

Doing nothing 855 855

GT only 211 154 57 11,167 124

ST only 586 558 28 3553 39

GT and ST 210 145 65

GT 10,130 113

ST 1653 18

ST share 0.14

Baseline

Doing nothing 855 855

GT only 211 154 57 11,167 124

ST only 575 545 29 5652 63

GT and ST 203 135 68

GT 9389 104

ST 3892 43

ST share 0.29

GT cost 50% higher

Doing nothing 855 855

GT only 235 172 63 8192 91

ST only 575 545 29 5652 63

GT and ST 223 146 77

GT 7229 80

ST 4297 48

ST share 0.37

(d) Wellington (share of risk/km2 = 0.09%)

ST cost 50% higher

Doing nothing 745 745

GT only 190 140 50 9875 111

ST only 513 491 22 2870 32

GT and ST 190 133 56

GT 9252 104

ST 1135 13

ST share 0.11
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TAB L E 2 (Continued)

Trap cost
Trapping
programming

Total expected
cost (USD million)

Damage
(USD million)

Trap cost
(USD million)

Traps required
(traps)

Trap density
(traps/km2)

Baseline

Doing nothing 745 745

GT only 190 140 50 9875 111

ST only 504 478 26 4939 56

GT and ST 184 123 61

GT 8616 97

ST 3324 37

ST share 0.28

GT cost 50% higher

Doing nothing 745 745

GT only 212 154 57 7497 84

ST only 504 478 26 4939 56

GT and ST 203 133 70

GT 6700 75

ST 3683 41

ST share 0.35

Note: “GT only” denotes a trapping program that uses only generalized traps; “GT and ST” denotes a trapping program that potentially uses both generalized
and specialized traps. The baseline results are in italics. All costs and damage are rounded to the nearest million USD.

Abbreviations: GT, generalized trap; ST, specialized trap.

TAB L E 3 Impact of changes in range of species that traps can capture.

Trap capture range
Trapping
programming

Total expected
cost (USD million)

Damage
(USD million)

Trap cost
(USD million)

Traps
required (traps)

Trap density
(traps/km2)

(a) Auckland (share of risk/km2 = 0.22%)

ST species evenly distributed

Doing nothing 4478 4478

GT only 858 509 348 68,850 317

ST only 4318 4301 18 3404 16

GT and ST 858 509 348

GT 68,850 317

ST 0 0

ST share 0.00

Baseline

Doing nothing 4478 4478

GT only 858 509 348 68,850 317

ST only 2900 2782 118 23,336 107

GT and ST 811 512 300

GT 44,132 203

ST 15,061 69

ST share 0.25

(Continues)
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TAB L E 3 (Continued)

Trap capture range
Trapping
programming

Total expected
cost (USD million)

Damage
(USD million)

Trap cost
(USD million)

Traps
required (traps)

Trap density
(traps/km2)

GT and STs mutually exclusive

Doing nothing 4478 4478

GT only 2426 2250 176 34,757 160

ST only 2900 2782 118 23,336 107

GT and ST 848 554 294

GT 34,757 160

ST 23,336 107

ST share 0.40

(b) Tauranga (share of risk/km2 = 0.68%)

ST species evenly distributed

Doing nothing 2115 2115

GT only 241 122 119 23,490 699

ST only 2032 2023 9 1577 47

GT and ST 241 122 119

GT 23,490 699

ST 0 0

ST share 0.00

Baseline

Doing nothing 2115 2115

GT only 241 122 119 23,490 699

ST only 1324 1294 30 5779 172

GT and ST 237 125 112

GT 19,981 595

ST 2034 61

ST share 0.09

GT and STs mutually exclusive

Doing nothing 2115 2115

GT only 1046 958 88 17,359 517

ST only 1324 1294 30 5779 172

GT and ST 254 137 118

GT 17,359 517

ST 5779 172

ST share 0.25

(c) Christchurch (share of risk/km2 = 0.1%)

ST species evenly distributed

Doing nothing 855 855

GT only 211 154 57 11,167 124

ST only 828 823 6 1000 11

GT and ST 211 154 57

GT 11,167 124

ST 0 0

ST share 0.00
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TAB L E 3 (Continued)

Trap capture range
Trapping
programming

Total expected
cost (USD million)

Damage
(USD million)

Trap cost
(USD million)

Traps
required (traps)

Trap density
(traps/km2)

Baseline

Doing nothing 855 855

GT only 211 154 57 11,167 124

ST only 575 545 29 5652 63

GT and ST 203 135 68

GT 9389 104

ST 3892 43

ST share 0.29

GT and STs mutually exclusive

Doing nothing 855 855

GT only 492 449 43 8339 93

ST only 575 545 29 5652 63

GT and ST 211 140 71

GT 8339 93

ST 5652 63

ST share 0.40

(d) Wellington (share of risk/km2 = 0.09%)

ST species evenly distributed

Doing nothing 745 745

GT only 190 140 50 9875 111

ST only 722 717 5 957 11

GT and ST 190 140 50

GT 9875 111

ST 0 0

ST share 0.00

Baseline

Doing nothing 745 745

GT only 190 140 50 9875 111

ST only 504 478 26 4939 56

GT and ST 184 123 61

GT 8616 97

ST 3324 37

ST share 0.28

GT and STs mutually exclusive

Doing nothing 745 745

GT only 433 394 39 7696 87

ST only 504 478 26 4939 56

GT and ST 192 127 65

GT 7696 87

ST 4939 56

ST share 0.39

Note: “GT only” denotes a trapping program that uses only generalized traps; “GT and ST” denotes a trapping program that potentially uses both generalized
and specialized traps. The baseline results are in italics. All costs and damage are rounded to nearest million USD.
Abbreviations: GT, generalized trap; ST, specialized trap.
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TAB L E 4 Impact of species that cannot be trapped and changes in ST species eradication probability.

TD and STSEP
Trapping

programming
Total expected

cost (USD million)
Damage

(USD million)
Trap cost

(USD million)
Traps required

(traps)
Trap density
(traps/km2)

(a) Auckland (share of risk/km2 = 0.22%)

Percentage NT

Doing nothing 4478 4478

GT only 1643 1374 269 53,166 245

ST only 2900 2782 118 23,336 107

GT and ST 1562 1323 239

GT 29,260 135

ST 17,849 82

ST share 0.38

Baseline

Doing nothing 4478 4478

GT only 858 509 348 68,850 317

ST only 2900 2782 118 23,336 107

GT and ST 811 512 300

GT 44,132 203

ST 15,061 69

ST share 0.25

ST species eradication
probability 50%
higher

Doing nothing 4478 4478

GT only 759 513 246 48,574 224

ST only 2845 2782 64 12,477 57

GT and ST 756 511 245

GT 44,132 203

ST 4202 19

ST share 0.09

(b) Tauranga (share of risk/km2 = 0.68%)

Percentage NT

Doing nothing 2115 2115

GT only 638 533 106 20,848 620

ST only 1324 1294 30 5779 172

GT and ST 627 537 90

GT 14,723 438

ST 3019 90

ST share 0.17

Baseline

Doing nothing 2115 2115

GT only 241 122 119 23,490 699

ST only 1324 1294 30 5779 172

GT and ST 237 125 112

GT 19,981 595
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TAB L E 4 (Continued)

TD and STSEP
Trapping

programming
Total expected

cost (USD million)
Damage

(USD million)
Trap cost

(USD million)
Traps required

(traps)
Trap density
(traps/km2)

ST 2034 61

ST share 0.09

ST species eradication
probability 50%
higher

Doing nothing 2115 2115

GT only 228 124 104 20,427 608

ST only 1315 1294 21 4099 122

GT and ST 228 124 104

GT 20,427 608

ST 0 0

ST share 0.00

(c) Christchurch (share of risk/km2 = 0.1%)

Percentage NT

Doing nothing 855 855

GT only 350 303 47 9274 103

ST only 575 545 29 5652 63

GT and ST 340 279 61

GT 7777 86

ST 4194 47

ST share 0.35

Baseline

Doing nothing 855 855

GT only 211 154 57 11,167 124

ST only 575 545 29 5652 63

GT and ST 203 135 68

GT 9389 104

ST 3892 43

ST share 0.29

ST species eradication
probability 50%
higher

Doing nothing 855 855

GT only 180 132 48 9400 104

ST only 552 542 10 1774 20

GT and ST 180 132 48

GT 9400 104

ST 0 0

ST share 0.00

(d) Wellington (share of risk/km2 = 0.09%)

Percentage NT

Doing nothing 745 745

GT only 311 268 43 8389 94

(Continues)
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this context, we focus only on highly damaging species
that STs can catch. We increased the likelihood of
successful eradication by 50% compared to the baseline
scenario. As shown in Table 4, TECs decreased in all
regions, but using STs is no longer economically efficient
in any area except Auckland. This result may seem coun-
terintuitive at first, but it makes sense because, in this
scenario, the detection of ST species was not affected,
and it was easier to eradicate them than in the baseline
scenario. Consequently, delaying detection is less costly
for ST species in this scenario, reducing the benefits of
trapping for them.

Impact of changes in trap sensitivity

The efficiency of a specific type of trap in capturing par-
ticular species, referred to as trap sensitivity, can influ-
ence the traps’ allocation and, ultimately, the economic

outcomes of the pest management program. In this study,
we examined the impact of this variable through two dif-
ferent scenarios. In the first scenario, we enhanced the
sensitivity of STs from 80% to 90%. In the second sce-
nario, we decreased the sensitivity of GTs from
15% to 10%.

As expected, increasing ST sensitivity and decreasing
GT sensitivity resulted in lower and higher TECs, respec-
tively (Table 5). However, the impact on the share of STs
was more nuanced. We observed a uniform increase in
ST shares across all regions as ST sensitivity increased.
In contrast, when GT sensitivity decreased, ST shares
increased in high-risk areas, namely, Auckland and
Tauranga, but marginally decreased in low-risk areas,
namely, Christchurch and Wellington. These results
highlight two important implications. First, there is a
substitution effect between the two trap types, and sec-
ond, the use of GTs is less sensitive to their detectability
in low-risk regions.

TAB L E 4 (Continued)

TD and STSEP
Trapping

programming
Total expected

cost (USD million)
Damage

(USD million)
Trap cost

(USD million)
Traps required

(traps)
Trap density
(traps/km2)

ST only 504 478 26 4939 56

GT and ST 303 247 55

GT 7212 81

ST 3587 40

ST share 0.33

Baseline

Doing nothing 745 745

GT only 190 140 50 9875 111

ST only 504 478 26 4939 56

GT and ST 184 123 61

GT 8616 97

ST 3324 37

ST share 0.28

ST species eradication
probability 50%
higher

Doing nothing 745 745

GT only 162 118 44 8603 97

ST only 482 473 9 1600 18

GT and ST 162 118 44

GT 8603 97

ST 0 0

ST share 0.00

Note: “GT only” denotes a trapping program that uses only generalized traps; “GT and ST” denotes a trapping program that potentially uses both generalized
and specialized traps. The baseline results are in italics. All costs and damages are rounded to the nearest million USD.
Abbreviations: GT, generalized trap; ST, specialized trap; STSEP, ST Species Eradication Probability; TD trap detectability.
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TAB L E 5 Impact of changes in trap sensitivity.

Sensitivity
Trapping

programming
Total expected

cost (USD million)
Damage

(USD million)
Trap cost

(USD million)
Traps required

(traps)
Trap density
(traps/km2)

(a) Auckland (share of risk/km2 = 0.22%)

ST 10% higher sensitivity

Doing nothing 4478 4478

GT only 858 509 348 68,850 317

ST only 2887 2775 112 22,055 102

GT and ST 803 510 292

GT 42,742 197

ST 14,931 69

ST share 0.26

Baseline

Doing nothing 4478 4478

GT only 858 509 348 68,850 317

ST only 2900 2782 118 23,336 107

GT and ST 811 512 300

GT 44,132 203

ST 15,061 69

ST share 0.25

GT 5% lower sensitivity

Doing nothing 4478 4478

GT only 993 677 316 62,458 288

ST only 2900 2782 118 23,336 107

GT and ST 897 595 301

GT 41,292 190

ST 18,174 84

ST share 0.31

(b) Tauranga (share of risk/km2 = 0.68%)

ST 10% higher sensitivity

Doing nothing 2115 2115

GT only 241 122 119 23,490 699

ST only 1320 1293 28 5342 159

GT and ST 235 125 111

GT 19,658 585

ST 2066 61

ST share 0.10

Baseline

Doing nothing 2115 2115

GT only 241 122 119 23,490 699

ST only 1324 1294 30 5779 172

GT and ST 237 125 112

GT 19,981 595

ST 2034 61

ST share 0.09

(Continues)
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TAB L E 5 (Continued)

Sensitivity
Trapping

programming
Total expected

cost (USD million)
Damage

(USD million)
Trap cost

(USD million)
Traps required

(traps)
Trap density
(traps/km2)

GT 5% lower sensitivity

Doing nothing 2115 2115

GT only 294 152 142 28,080 836

ST only 1324 1294 30 5779 172

GT and ST 279 156 123

GT 21,007 625

ST 3154 94

T share 0.13

(c) Christchurch (share of risk/km2 = 0.1%)

ST 10% higher sensitivity

Doing nothing 855 855

GT only 211 154 57 11,167 124

ST only 571 542 29 5567 62

GT and ST 200 133 68

GT 9248 103

ST 4026 45

ST share 0.30

Baseline

Doing nothing 855 855

GT only 211 154 57 11,167 124

ST only 575 545 29 5652 63

GT and ST 203 135 68

GT 9389 104

ST 3892 43

ST share 0.29

GT 5% lower sensitivity

Doing nothing 855 855

GT only 235 172 63 12,289 137

ST only 575 545 29 5652 63

GT and ST 223 146 77

GT 10,845 121

ST 4297 48

ST share 0.28

(d) Wellington (share of risk/km2 = 0.09%)

ST 10% higher sensitivity

Doing nothing 745 745

GT only 190 140 50 9875 111

ST only 501 475 25 4926 55

GT and ST 182 121 61

GT 8494 96

ST 3510 40

ST share 0.29
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Lastly, we investigated how the model results fluc-
tuated with a broader variation in ST sensitivity, rang-
ing from 30% to 90%. Appendix S4: Figure S1 illustrates
the impact on TEC and the proportion of STs required
in integrated programs. Within the baseline scenario,
where GTs can capture all species detectable by STs,
albeit with lower sensitivity, STs must demonstrate
high effectiveness to be included in integrated pro-
grams. Indeed, in the riskiest region, Tauranga, STs
necessitate a sensitivity of 45% or higher to be consid-
ered, and even at a 90% sensitivity level, their
share does not exceed 10% of the total traps required.
In contrast, in other regions, STs necessitate a compa-
rable level of sensitivity to be included, potentially con-
stituting up to 30% of the total traps in integrated
schemes.

DISCUSSION

Surveillance is used for several purposes in national
surveillance programs (Kalaris et al., 2014). However, its
most important objective is to detect newly founded
populations early enough to facilitate their eradication
(Kean et al., 2015). Two approaches to surveillance are
often recognized: passive surveillance, which utilizes

existing information (e.g., data mining from biodiversity
samples or citizen observations), and directed surveil-
lance, which applies methods (e.g., traps, molecular sen-
sors) that target individual species or groups of species
(Anderson et al., 2017). In this paper, we focus on
directed surveillance and explore its optimization for use
in detecting plant pests.

Due to the high cost of implementing national sur-
veillance systems and their importance to the success
of biosecurity programs, there are major incentives in
designing these systems to be cost effective. Several
approaches have been taken in the optimization of sur-
veillance systems (Koch et al., 2020). One approach has
been to identify optimal strategies that minimize sur-
veillance expenditures while simultaneously minimizing
damage that occurs when surveillance fails (e.g., Holden
et al., 2016; Yemshanov et al., 2019). Other approaches to
surveillance optimization, such as those adopted here,
minimize surveillance costs along with eradication costs
(e.g., Epanchin-Niell et al., 2012; Hauser & McCarthy,
2009; Kompas et al., 2023).

While early efforts to identify optimal surveillance
strategies relied on several simplifying assumptions to
keep the problem tractable, recent work has been able
to account for more realistic complexities that make this
work more applicable. These complexities have included

TAB L E 5 (Continued)

Sensitivity
Trapping

programming
Total expected

cost (USD million)
Damage

(USD million)
Trap cost

(USD million)
Traps required

(traps)
Trap density
(traps/km2)

Baseline

Doing nothing 745 745

GT only 190 140 50 9875 111

ST only 504 478 26 4939 56

GT and ST 184 123 61

GT 8616 97

ST 3324 37

ST share 0.28

GT 5% lower sensitivity

Doing nothing 745 745

GT only 212 154 57 11,246 127

ST only 504 478 26 4939 56

GT and ST 203 133 70

GT 10,051 113

ST 3683 41

ST share 0.27

Note: “GT only” denotes a trapping program that uses only generalized traps; “GT and ST” denotes a trapping program that potentially uses both generalized
and specialized traps. The baseline results are in italics. All costs and damage are rounded to the nearest million USD.

Abbreviations: GT, generalized trap; ST, specialized trap.
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accounting for uncertainty in underlying biological
parameters (Horie et al., 2013), accounting for spatial var-
iation in detection costs (Moore & McCarthy, 2016), and
accounting for travel routes to surveillance locations
(Yemshanov et al., 2020). Only a few studies have
attempted to optimize surveillance programs that focus
on the detection of multiple species (Epanchin-Niell
et al., 2014; Jarrad et al., 2011). But to date there have
been no published attempts, to the best of our knowl-
edge, to optimize surveillance for multiple species by
allocating surveillance effort among various types of
detection tools, even though practical implementation
of surveillance often demands the selection of tools
(e.g., traps) of varying specificity and cost (Poland &
Rassati, 2019).

In this study, we investigated whether using a combi-
nation of trap types that differed in their specificity for
detecting species could enhance the efficiency of invasive
surveillance programs. We explored the trade-offs among
the use of different trap types by applying a bioeconomic
surveillance model to manage bark- and wood-boring
insect species in New Zealand. These species are among
the most serious groups of forest pests worldwide (Aukema
et al., 2011; Lieutier et al., 2004), and they vary substantially
in their detectability by different lures and survey methods.
Our findings illustrate the context dependence of their com-
plementarity and substitutability, with the relative impor-
tance of each trap type depending on the attributes of the
traps and the invasion contexts.

We found that the wide deployment of GTs is eco-
nomically justified—even if they are generally less sensi-
tive than STs—because GTs detect a wider range of
species. However, the inclusion of STs is optimal across
most of the contexts that we explored because of their
greater sensitivity for detecting more damaging species.

The relative efficiency of STs, however, is quite
dependent on their cost and sensitivity compared to GTs
and, predominantly, the coverage capacity of GTs. The
lower sensitivity or higher costs of a particular type of
trap tend to reduce that type’s relative use but can
increase overall trapping investments. Thus, the relative
price and detectability between the two trap types will,
by and large, determine their optimal combination. But
the marginal impact of the change caused by GTs on
model outcomes is expected to be much more significant
due to their extensive coverage. Furthermore, high arrival
rates by invasive species generally make it more econom-
ical to blanket landscapes with GTs as they can detect a
broader range of species. Finally, the higher the chance
of successfully eradicating insects that specialized tools
can catch, the less likely the tools will be required
because delaying detection becomes less costly for these
species.

One limitation of our analysis is that we only considered
two categories of surveillance tools, but in reality, there
may be a larger array of tools available. This would obvi-
ously make the selection of an optimal mixture of surveil-
lance tools more complex. While many scolytine species
utilize species-specific compounds for chemical communi-
cation, other species share certain compounds, and in some
cases a single compound or blend of compounds may be
attractive to multiple species (Raffa et al., 2015). For exam-
ple, most North American Ips species are attracted to the
blend of compounds used by the European spruce bark bee-
tle, Ips typographus, for aggregation (Rabaglia et al., 2019).
Also, in some cases, it is possible to utilize a single trap that
is baited with multiple lures, each highly specific for multi-
ple pests (Chase et al., 2018; Moir et al., 2022). This may
represent a situation intermediate between the GT and ST
methods considered here. Furthermore, our analysis
assumed that there was no trend of association between the
availability of specialized traps for a given species and the
cost of the impact of a species. In reality, this often may not
be the case because research on semiochemicals and trap-
ping technologies often focuses on high-impact species.
When pests are anticipated to have lower impacts, highly
specific attractants may not be available.
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