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High-resolution land use/cover 
forecasts for Switzerland in the  
21st century
Luca Bütikofer1,2 ✉, Antoine adde  3, Davnah Urbach4,5, Silvia tobias  6, Matthias Huss6,7, 
antoine Guisan3 & Christophe Randin1,2,5

We present forecasts of land-use/land-cover (LULC) change for Switzerland for three time-steps in 
the 21st century under the representative concentration pathways 4.5 and 8.5, and at 100-m spatial 
and 14-class thematic resolution. We modelled the spatial suitability for each LULC class with a neural 
network (NN) using > 200 predictors and accounting for climate and policy changes. We improved 
model performance by using a data augmentation algorithm that synthetically increased the number of 
cells of underrepresented classes, resulting in an overall quantity disagreement of 0.053 and allocation 
disagreement of 0.15, which indicate good prediction accuracy. These class-specific spatial suitability 
maps outputted by the NN were then merged in a single LULC map per time-step using the CLUE-S 
algorithm, accounting for LULC demand for the future and a set of LULC transition rules. As the first 
LULC forecast for Switzerland at a thematic resolution comparable to available LULC maps for the past, 
this product lends itself to applications in land-use planning, resource management, ecological and 
hydraulic modelling, habitat restoration and conservation.

Background & Summary
From as early as 12,000 BP, anthropogenic activities like burning, hunting, cultivation, species translocation, 
deforestation and urbanisation have altered terrestrial landscapes around the globe1. The magnitude of these 
alterations is such that it became detectable in the geological record, which set the benchmark for the begin-
ning of the so-called Anthropocene2—the first geological epoch dominated by anthropogenic activity. The main 
manifestations of the Anthropocene’s environmental changes are land-use/land-cover (LULC) changes3,4, which 
are brought about by the interplay of anthropogenic and environmental forces5 and are the main cause of bio-
diversity loss6. Two key tools for understanding LULC changes are LULC maps, which depict the spatial distri-
bution of LULC classes, and LULC predictive models, which model their temporal dynamics7. LULC models 
can be used both as projection and as hypothesis-testing tools to gain insight onto the causes and consequences 
of LULC changes, and they can provide a computational basis to decision-making in land-use planning and 
policy8.

In Switzerland, landscapes have been sculpted by anthropogenic activities since the Bronze age, and are 
being further affected by climate change—especially in mountainous regions9–11. In the recent past, these 
changes have been monitored by the Swiss Federal Statistical Office, which has produced four iterations of 
aerial-survey-derived LULC maps (1979–85, 1992–97, 2004–09 and 2012–18)12. These maps classify the 
Swiss landscape into LULC classes at multiple thematic resolutions. The highest thematic resolution version 
(“NOAS04_72”) has 72 classes; additionally aggregations are made available at 27 (NOAS_04_27”) and 17 
(NOAS04_17”) classes.
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Efforts to optimise multiple goals across policy sectors—e.g. agriculture, forestry, industry, urban develop-
ment, tourism, and nature conservation—often result in competition for limited land resources6,13. As a conse-
quence, LULC maps for the future as well as a LULC model able to inform alternative management scenarios 
are critically needed to facilitate landscape-related decision making. Gerecke et al.14 provided projections of 
LULC transitions for four classes (“Built-up area”, “Lowland agriculture”, “Alpine agriculture”, and “Forest”) for 
the 2009–2081 period in the context of modelling trade-offs among landscape services. However, LULC fore-
casts with a thematic resolution that matches LULC maps already available for the past is still missing. We 
filled this gap with 100-m geographic projections of LULC change for three time-steps at 30-year intervals in 
the 21st century (2020–2049, 2045–2074, and 2070–2099) under the Representative Concentration Pathways 
(RCP) 4.5 and 8.5. For this, we used a pattern-based approach15 structured in four steps: (1) a Environmental 
Suitability module16–18; (2) a Demand module19–21; (3) a Transitions module19; and (4) an Allocation module22. 
Additionally, glacier retreat was accounted for by including the mechanistic projections of Steffen et al.23. The 
resulting LULC maps have the same thematic resolution of 17 classes that can also be found in the LULC maps 
of the Swiss Federal Statistical Office24.

This dataset25 represents the first set of LULC projections made at the same thematic and spatial resolution of 
available LULC maps for Switzerland. This compatibility with past Swiss LULC products ensures its suitability 
for several applications including long-term land-use planning support and resource management, prioritisa-
tion of conservation and habitat restoration, hydraulic modelling and water usage plans, dynamic global vegeta-
tion models, and species distribution models26–28. The dataset was mandated by the Swiss Federal Office for the 
Environment, which aims at integrating our results in their future environmental policies.

Methods
The four-step workflow (Fig. 1) used in preparing the LULC forecasts largely matches the typical architecture 
of inductive LULC change models29,30. The first step is the Environmental Suitability module, which provides 
information on where each LULC class is likely to occur in the study area at each time-step (Fig. 1, red pipeline). 
This is done in two versions, one with climate data derived for RCP 4.5, and one for RCP 8.5. The second step is 
the Demand module, which quantifies the prevalence of each LULC class for each time-step (i.e. the proportion 
of land covered by that class; Fig. 1, green pipeline); here no distinction between RCPs is made. The third step 
is the Transitions module (Fig. 1, blue pipeline), which defines which LULC transitions are allowed and which 
are prevented. Finally, the fourth step is the Allocation module, which combines the information provided by 
the previous three modules into a single LULC map for each time-step (Fig. 1, black pipeline); here two versions 
reflecting different RCPs are produced.

The Environmental Suitability module would in principle be sufficient to produce LULC forecasts. 
However, these forecasts would be entirely based on information contained in the module inputs. The Demand, 
Transitions, and Allocation modules—in addition to preventing possible inaccuracies of the Environmental 

Fig. 1 Four-steps (red, green, blue and black) workflow scheme for the LULC predictive model used to produce 
the LULC forecasts for Switzerland. The NN of the Environmental Suitability module (red) is trained with LULC 
maps for 1979-85, 1992-97, and 2004-09 and other predictors as independent variables, and the LULC map for 
2012-18 as the response variable. Once trained, the NN is iteratively fed LULC maps of three consecutive time-
step to predict the next one. Its output—a set of LULC suitability maps (one map per LULC class) showing the 
likelihood of finding each LULC class—is used in combination with that of the Demand (green) and Transition 
modules (blue) to allocate (CLUE-S algorithm) each 100×100 m cell in Switzerland to a single LULC class 
(Allocation module, black)—effectively returning a standard LULC map (final diamond box).
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Suitability module—allow the refinement of the output of the Environmental Suitability module by accounting 
for foreseeable changes in future LULC drivers, such as planned changes in policy. Different LULC forecasts can 
be obtained by varying the parameters of Demand and Transition modules, which are then integrated in the 
final forecast by the Allocation module. Our forecasts are the result of a single scenario that combines “baseline” 
future projections of data-driven trends from the past, with “modified” future projections whenever currently 
available sectorial policies clearly define future deviations from the baseline forecasts. These “modified” pro-
jections can be parameterised in the Demand module, the Transition module, or both. For this reason, in the 
section titled “Scenario description”, we describe our modifications to the baseline projections, and link them 
to the steps in the workflow that realise them. Although the single scenario we produced is made available in 
two versions reflecting different RCPs, RCPs only affected the climate data fed to the Environmental Suitability 
module, and not in the Demand, nor in the Transitions modules.

We describe our four-step workflow in details in the next four sections.

Step 1: Environmental suitability module. To produce the past LULC raster maps we downloaded the 
GeoStat data (available in CSV format at the direct download link https://dam-api.bfs.admin.ch/hub/api/dam/
assets/25885691/master) and extracted the easting, northing and LULC values for the study period (columns E, 
N, and AS85_72 till AS18_72). These maps are derived from aerial images at a native resolution ranging from  
25 to 50 cm. Classes are attributed to points on a 100 m grid but the point’s neighbourhoods are considered in the 
process (e.g. class “Trees” is attributed to groups of at least three trees no more than 25 m apart). We converted 
the point grid to raster format by attributing the points’ values to 100 m × 100 m raster cells centred around each 
point.

The Environmental Suitability module aims at computing the suitability of each pixel for one of the 17 LULC 
classes of NOAS04_17 at each time-step. However, of these 17 classes, projections are made for only 14 of them, 
while the remaining three classes (“Lakes”, “Rivers”, and “Transportation”) remain static throughout all com-
putations (with the exception of new Alpine lakes formed as a consequence of deglaciation23) either because 
they would have been too computationally intensive for reliable modelling, or because their expected change in 
spatial extent and position during the modelled period was considered negligible. These static classes have even-
tually been replaced by their counterpart from the highest thematic resolution NOAS04_72 in the final maps, 
bringing the thematic resolution of the final maps to 26 classes (i.e. the static class “Lakes” from NOAS04_17 
remains a single class in NOAS04_72, while class “Rivers” from NOAS04_17 was replaced by the classes “Rivers” 
and “Flood protection structures” from NOAS04_72, and class “Transportation” form NOAS04_17 was replaced 
by the nine counterpart classes from NOAS04_72, see Table 1 for details).

The Environmental Suitability module is based on a feedforward Neural Network (NN) that predicts the 
suitability of the landscape for the 14 non-static LULC classes based on predictor variables. The output of the NN 
is a set of suitability maps for each land-use class at the next time-step. Spatially explicit predictor variables used 
to train the NN include LULC maps for three past time-steps (1979–85, 1992–97, 2004–09) as well as a range 
of climatic, ecological, and socio-economic predictors including the dominant land-use class in a 5 km × 5 km 
neighbourhood, five major river basins, proportion of each land-use class in a 5 km × 5 km neighbourhood, 
noise from transportation, cantons (i.e. Swiss administrative regions, used to account for differences in land-
cover management arising from variations in cantonal policies), distance to roads of 5 classes based on size,  
19 climatic variables, distance to urban areas of 3 classes based on size, 10 soil variables, population density, 

Land-use classes

Modelled Static

17-Classes Name 17-classes No. 17-Classes Name 17-classes No. 72-Classes Name 72-Classes No.

Industry 1

Transportation 15

Motorways 15

Building 2 Green motorway environs 16

Special urban 3 Roads and paths 17

Urban green 4 Green road environments 18

Horticulture 5 Parking areas 19

Arable 6 Sealed railway areas 20

Grassland 7 Green railway environments 21

Alpine grassland 8 Airports 22

Forest 9 Airfields, green airport environments 23

Brush 10 Lakes 16 Lakes 24

Trees 11
Rivers 17

Rivers 25

Unproductive vegetation 12 Flood protection structures 26

Bare land 13

Glacier 14

Table 1. LULC classes in the LULC map forecasts. “Modelled” indicates the classes predicted by the NN. 
“Static” classes are kept unchanged during the modelling period (2020–2099). “No.” refers to the integer with 
which classes are encoded in the raster files. 17-Classes refers to the “NOAS04_17” version of the Swiss Federal 
Statistical Office, while 72-Classes to “NOAS04_72”.
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bed-rock type, population density in a 9 km × 9 km neighbourhood, 14 hydrology variables, elevation, distance 
to lakes of 3 classes based on size, slope, and distance to rivers of 3 classes based on size (see Supplementary 
Table 1 for a complete list of predictors). All these variables were collated in a single dataset. The response var-
iable during training was the current (2012–18) LULC map. As we wanted the NN to learn LULC patterns that 
span more than only a single or double time-step, we performed training with three past time-steps as predictor 
variables and the current time-step as response variable rather than using only one or two past time-steps as 
predictors and the following time-step as response.

All predictors were converted in 100 m × 100 m resolution raster files in the CH1903 + /LV95 (EPSG:2056) 
projected Swiss coordinate system and resampled to match the cell coordinates of LULC rasters. All spatial 
processing was carried out in R31. The total number of predictors was reduced by removing correlated varia-
bles among the continuous ones with R package “covsel”32; all categorical variables (marked as “categorical” in 
Supplementary Table 1) were one-hot encoded33 (i.e. each categorical variable was transformed into as many 
variables as its number of classes, each new variable reporting the presence (value of 1) and the absence (value 
of 0) of its corresponding class) and were not passed through the variable selection algorithm as it handles con-
tinuous variables only. The detection of correlated variables was done only on the training dataset and assumed 
constant throughout the modelling period because the NN requires the same variables at each time-step. The 
final number of predictor variables after selection and one-hot encoding entering the NN was 242 (i.e. the num-
ber of input nodes).

The NN architecture was selected by iteratively evaluating its cross-validation accuracy (validation split of 
0.2) and the value of the loss function as well as the evolution during training of these two statistics (Fig. 3).  
The best performing architecture was a 242 neurons input layer, followed by five densely connected hidden 
layers with Rectified Linear Unit (ReLU) activation function34, separated by four dropout layers (0.2 dropout 
rate), followed by a 14 neurons output layer (one for each LULC class) with a softmax activation function35. NN 
training and projection was carried out with the Keras interface for TensorFlow on Python36.

NN training was carried out on a sample of 775936 cells. A balanced sampling approach37 was adopted to 
compensate for the relative scarcity of cells that change LULC at any time-step. Thus all changing cells were 
included in the sample together with an equal number of non-changing cells; this way the NN would not just 
ignore the much rarer “changing cells”. Since some LULC classes (e.g. urban classes) were highly underrepre-
sented, all classes except the most prevalent one were oversampled with the Synthetic Minority Over-sampling 
TEchnique-Nominal Continuous (SMOTE-NC) algorithm38 provided in R package “RSBID” to a sample 
size equivalent to that of the most prevalent class; this way the NN would not just ignore the rarer classes. 
Oversampling was conducted only for the changing subset of cells. This is because the number of cells of the 
most prevalent class among the changing subset was still smaller than the number of cells for the least prevalent 
class among the non-changing subset. Summarising, the final training sample contained an equal number of 
changing and non-changing cells as well as an equal number of cells for each class. All features were centred and 
scaled by subtracting the mean and dividing by the standard deviation.

For each future time-step t + 1, the LULC predictor variables (LULC maps and LULC neighbourhood var-
iables) derived from the past three time-steps (t-2, t-1, and t0) were updated (e.g. for the first future projection 
t + 1, the LULC maps for 1992–97, 2004–09 and 2012–18 were used as predictor variables to predict the LULC 
map for 2020–49) together with the climatic variables, while all other predictors were left unchanged. Two 
versions of the predictive step were produced whereby the climate variables were derived for different RCPs  
(RCP 4.5, and RCP 8.5). The softmax values of each output node for all raster cells resulted in suitability maps for 
each LULC class. These 14 maps (one for each predicted class) were combined together with the outputs of the 
Demand module and Transitions module in the Allocation module to finalise the LULC forecasting.

Step 2: Demand module. The aim of the Demand module is to allow for direct control over the preva-
lence of each LULC class in the LULC map forecasts. We derived quantitative estimates of LULC prevalence for 
the future (i.e. LULC demand) by first computing the prevalence of each LULC class from the observed LULC 
maps (1979–85, 1992–97, 2004–09 and 2012–18), and then performing a linear extrapolation for the future three 
time-steps (2020–2049, 2045–2074 and 2070–2099) with the R function “approxExtrap” from the “Himsc” pack-
age, which computes future prevalences by projecting the prevalence slope observed between 2045–2074 and 
2070–2099.

To account for future sectorial policy changes, we maintained constant the prevalence of urban classes 
(“Industry”, “Building”, “Special urban”, “Urban green”) and “Orchard” while forecasting the 2045–74 and 2070–
99 time-steps. This is because urban expansion in Switzerland is going to be limited by the Swiss federal act on 
spatial planning (Spatial Planning Act39) currently in the process of being implemented by cantons and munici-
palities. Additionally, orchards are increasingly preserved thanks to the national strategies for the preservation of 
arable land, biodiversity, and climate change mitigation (Swiss Biodiversity Strategy and Action Plan40; Sectorial 
Plan of Cropland Protection41; Federal council strategy for adaptation to climate change in Switzerland42).

The Demand module does not vary according to RCPs. Instead, both RCP 4.5 and RCP 8.5 share the same 
LULC demand.

Step 3: Transitions module. The goal of the Transitions module is to define transition rules. These deter-
mine which land-use class can be converted into which other ones. Certain transitions are prohibited because 
of their unlikeliness (e.g. conversion of urban into glacier), their economic unviability (e.g. conversion of urban 
areas into forests would waste the initial development investment22), or because of policy changes. For instance, 
future urbanisation is restricted by the Spatial Planning Act but currently scheduled development projects will 
be allowed to proceed. Therefore, to allow for some leeway in the implementation of the Spatial Planning Act, we 
permitted urban expansion for the first time-step and prevented it afterwards.

https://doi.org/10.1038/s41597-024-03055-z


5Scientific Data |          (2024) 11:231  | https://doi.org/10.1038/s41597-024-03055-z

www.nature.com/scientificdatawww.nature.com/scientificdata/

To allow for different rules at different times, two transition matrices were produced (Supplementary 
Tables 2, 3), one for the first (till 2020–49) and one for the second and third (2045–74 and 2070–99) time-steps. 
Transition rules are fed to the Allocation module in the form of a matrix with the current land-use classes as 
rows and the future land-use classes as columns. Allowed and forbidden transitions are marked with 1 and 0, 
respectively.

Step 4: Allocation module. The Allocation module combines the outputs of the Environmental Suitability 
module, the Demand module, and the Transition module into a single LULC map per time-step (i.e. 2020–2049, 
2045–74 2074, and 2070–2099, each in two versions reflecting different RCPs), thus allowing to implement devi-
ations from the data-driven, “baseline” projections produced by the NN. We performed allocation with the Land 
Use and its Effects at Small regional extent (CLUE-S) algorithm17. In brief, CLUE-S uses LULC demand to allocate 
the requested number of map cells for each class at each time-step. It allocates each class starting from the cells 
with the highest suitability score (NN output node activation), then gradually proceeds by filling in cells with pro-
gressively lower suitability. Competition in cells with high suitability for multiple classes is addressed by balancing 
environmental suitability with LULC demand. This is all done while accounting for transition rules, which define 
which LULC class transitions are allowed.

We used the CLUE-S model as implemented in R package “lulcc”29. However, since the “lulcc” package 
does not support NN classifiers, we used the hidden function “.clues” in isolation from the “allocate” function 
(see supplementary material for the accuracy of the model in delivering the exact LULC demand). For each 
time-step, the Allocation module combines the environmental suitability maps produced by the NN into a 
single LULC map by allocating each cell to a single class according to its suitability for it as expressed as output 
node activation, the feasibility of the transition according to the predicted LULC demand for the class, and the 
transition rules. The two RCP versions produced by the Environmental Suitability module are treated in the 
same way in the Allocation module, thus generating two versions of the LULC map which reflect the two RCPs.

After the allocation step was completed, to accurately represent the dynamics of glacier retreat and the for-
mation of new lakes from their thawing, we replaced all cells classified by our model as “Glacier” with “Bare 
rock” and then overlaid the final LULC map with the output of a mechanistic glacier and glacial lake model23. 
These steps results in a different prevalence of the “Glacier” and “Bare rock” classes than what required by the 
Demand module. However, the mechanistic glacier model we used is much more sophisticated than the linear 
extrapolation we used to infer “Glacier” and “Bare rock” prevalences, thus greatly adding to the realism of the 
LULC forecast.

Scenario description. Both the LULC demand and the transition rules are key in steering the simulation of 
future Swiss landscapes. These were set to produce a “baseline” scenario reflecting minimum changes to the past 
LULC change dynamics (with the only departures from this trend accounting for the evolution of urban planning 
and biodiversity conservation policies, see “Step 2: Demand module”). To facilitate the understanding of their 
influence, we list here a few important characteristics of the simulation that are dictated by LULC demand and 
transition rules:

 1. No class can take over land occupied by urban classes as too many resources were spent in the past to con-
vert this land into urban areas (parameterised in the Transition module).

 2. Urban expansion is prevented starting from 2045–2074 as a consequence of the implementation of the 
Spatial Planning Act and the expected population growth (parameterised in the Transition and Demand 
modules).

 3. “Arable” and “Grassland” can be urbanised, but only during the first time-step (2020–2049). The two 
classes are always allowed to transition into one-another to reflect both crop rotation in mixed agricultural 
systems and permanent conversions. These two classes are also allowed to take over “Forest”, “Brush”, and 
“Unproductive vegetation”, but only to the extent that satisfies the baseline LULC demand (parameterised 
in the Transition and Demand modules).

 4. “Alpine grassland” can take over “Forest”, “Brush”, “Trees”, and “Unproductive vegetation” to simulate the 
process of clearing forested areas to preserve valuable agricultural or man-made landscapes as allowed by 
the 2012 amendment on the federal law on forestry39. The natural vegetation dynamics following Alpine 
pasture abandonment is simulated by the sequence “Alpine grassland” to “Brush” (or “Trees”), to “Forest”. 
Therefore, transitions along this sequence are only allowed in the forest-ward direction (i.e. “Forest” cannot 
be taken over by “Trees” or “Brush”) (parameterised in the Transition module).

 5. Forest expansion on built and cultivated land is prevented, but it is allowed on “Alpine grassland” to simu-
late Alpine pastures abandonment. It is also allowed over “Brush”, “Trees”, and “Unproductive vegetation” 
to simulate the natural vegetation dynamics. As the rate of future abandonment of Alpine pastures is 
dictated solely by extrapolation from past trends, the upwards shift of the treeline in Alpine environments 
is controlled primarily by land management rather than climate change—which would otherwise show a 
much faster colonisation of Alpine grasslands by forests43 (parameterised in the Transition and Demand 
modules).

 6. As the land-use classes “Trees”, “Brush” and “Unproductive vegetation” can be ambiguous at times, we 
allowed these classes to transition into one-another. However, “Trees” are the only forested class that is 
allowed to take over “Grassland” to simulate the formation of new hedges. These can be planted for both 
agricultural (windbreakers) and biodiversity conservation (as habitats) purposes (parameterised in the 
Transition module).

 7. Orchards (i.e. “Horticulture” class) are maintained to reflect efforts in biodiversity conservation and carbon 
sequestration. This class can take over land occupied by “Arable”, “Grassland”, “Trees” or “Unproductive 
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vegetation”. However, transitions to “Horticulture” are only allowed to the extent of replacing losses as this 
class has been declining in the past and we have simulated its conservation in the future (parameterised in 
the Transition and Demand modules).

 8. The natural glacier retreat dynamic is simulated by the sequence “Glacier” to “Bare land” to “Unproductive 
vegetation”. Transitions among these classes are only allowed in the direction of “Unproductive vegeta-
tion”—which is the only class that can take over “Bare land”. “Unproductive vegetation” can then become 
“Trees”, “Brush”, “Forest”—simulating forestation—or “Alpine grassland” simulating the formation of new 
high-elevation pastures (parameterised in the Transition module).

Data Records
We deposited our LULC maps25 on EnviDat (https://doi.org/10.16904/envidat.458). The dataset is composed 
of a compressed (.zip) file containing three georeferenced raster files in the GeoTIFF format with embedded 
coordinate reference system; a table (comma separated values,.csv) encoding a colour palette for plotting; and 
the code used to generate the LULC forecasts (see Code Availability section). GeoTIFF file names include the 
time-step and the RCP (e.g. “LULC_2020_2049_RCP45.tiff ”). Each raster file has 3484 × 2207 square pixels  
(i.e. 7.7 megapixels) and is projected in the Swiss coordinate system CH1903 + /LV95 (EPSG:2056). Cell values 
are integers from 1 to 26 representing the LULC classes as listed in Table 1.

The colour palette table contains the HEX colour codes for each class to reproduce the maps in Fig. 2. For 
the sake of clarity, this colour palette aggregates all transportation and freshwater classes together, effectively 
plotting the 17 classes of “NOAS04_17” (see Table 1).

technical Validation
We validated the performance of (1) the NN and (2) the allocation algorithm separately. (1) When validating 
the NN we used it as a classifier and attributed each data point (i.e. pixel) to the output node with the highest 
activation (i.e. the most suitable LULC class). The NN’s performance therefore reflects the capacity of the model 
to forecast future LULC based purely on past trends.

In our normal workflow, the allocation algorithm—by integrating Demand and Transitions modules—
allowed us to modify the output of the NN in order to account for future LULC change drivers that the NN had 
no access to during training (e.g. future implementation of the Spatial Planning Act). Since the whole point of 
introducing the Demand and Transitions modules in our workflow was to modify their parameterisation when 

Fig. 2 LULC maps for Switzerland. Top: the whole country for 2012-18. Bottom: enlargements to a sample 
Alpine region (Entremont district) for 2012-18, 2020-49, 2045-74, and 2070-99.
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projecting to the future, validating the performance of the whole workflow for the prediction of current LULC 
would provide no information on the forecast’s accuracy.

The evolution of the NN accuracy and loss function during training (Fig. 3) shows that a plateau was reached 
by the 80th training epoch showing that peak performance was reached. The convergence of the test and training 
lines indicates that the NN generalises well.

The dataset prepared to train the NN was split for cross validation (validation split of 0.2) and only 80% 
of it was actually used for training while the remaining 20% was kept aside for testing. Since the test split was 
extracted from the NN training data, it contained an equal number of changing and static cells, as well as the 
same number of cells from all land-use classes. This ensured that testing was not biased by an overwhelming 
proportion of easily learnable patterns like static cells or very consistent change patterns. The accuracy of the 
trained NN was tested on the test subset by computing overall accuracy rate (0.79, with a 95% confidence inter-
val ranging from 0.7912 to 0.7948), quantity disagreement (0.053) and allocation disagreement (0.154)44, as 
well as class-specific statistics of Sensitivity (true positive rate), Specificity (true negative rate), and Balanced 
Accuracy (i.e. mean of sensitivity and specificity) (Table 2).

The average class-wise balanced accuracy is 0.89, with the lowest value of 0.72 for “Unproductive vegeta-
tion” and a maximum of 0.98 for “Forest”. The lowest performance for the “Unproductive vegetation” class may 
be explained by its wide definition which encompasses visually diverse landscapes such as bushes, ski slopes, 
un-grazed grassland, and wetlands. The class-specific sensitivity value (0.46, specificity is 0.98) is responsible 
for the low score and probably indicates that the NN classified “Unproductive vegetation” cells as “Grassland”, 

Fig. 3 Neural network training summary of cross-validation accuracy (top) and loss function (bottom) values 
(both statistics are unit-less) against epochs.

Classes

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Sensitivity 0.96 0.90 0.65 0.64 0.84 0.91 0.83 0.76 0.97 0.89 0.79 0.46 0.85 0.66

Specificity 0.99 0.99 0.97 0.98 0.98 1.00 0.98 0.99 1.00 0.98 0.96 0.98 0.98 0.98

Balanced Accuracy 0.97 0.95 0.81 0.81 0.91 0.95 0.91 0.88 0.98 0.93 0.88 0.72 0.91 0.82

Table 2. Class-specific statistics of cross-validation classification performance of the Neural Network.
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“Forest”, or “Brush”. Please note that these comparisons are between our model results and the GeoStat LULC 
products. Since the GeoStat classification is not free from errors and we used these maps as input variables, their 
error will also be present in our results (unfortunately we could not find data on the accuracy of the original 
GeoStat classification).

(2) As multiple LULC classes may have high suitability for the same cell, the allocation algorithm may not 
succeed in allocating the exact requested prevalence to each class. After the allocation completed, we measured 
the difference among the requested and obtained class prevalences (Fig. 4). Results show that most differences 
are very small—less than 0.2% difference between the requested and obtained increase, indicating that CLUE-S 
managed our allocation requests successfully.

Usage Notes
Below we provided a sample R code to read and display the LULC map for the 2020–49 time-step with R. 
However, our files can be easily read with other geographic information systems like ArcGIS and QGIS.

library(terra)

# Read map
r < - rast("LULC_2020_2049_RCP45.tiff")

# Aggregate transportation and freshwater classes
r[r > 14 & r < 24] < - 15
r[r > 15] < - 16

# Read colour palette
cols < - read.csv("ColourPalette.csv")

# Plot map
plot(r,
   type = "classes",
   col = cols$Colour,
   levels = cols$Description,
   mar = c(3.1, 3.1, 2.1, 10))

Fig. 4 Comparison of LULC demand versus the LULC prevalence returned by the allocation. Bar values indicate 
the difference between the requested increase in prevalence with reference to the 1979-85 time-step, and the 
obtained one after allocation (e.g. if a class is required to increase its prevalence from 1979-85 by 0.3 (30% more 
prevalent in the study area) and the allocation returns an increase of 0.4 the bar will have a value of 0.1).

https://doi.org/10.1038/s41597-024-03055-z
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Code availability
Code used to produce the LULC forecasts is available on our EnviDat repository (https://doi.org/10.16904/
envidat.458)25. The script is based on input data which are not included as they are not freely available, therefore it 
will not run as it is. These input data and their sources are listed in Supplementary Table 1; access to them can be 
requested to their owners. Alternatively, the code can be modified to run on other data.

Received: 13 June 2023; Accepted: 8 February 2024;
Published: xx xx xxxx
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