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Abstract Understanding stresses is crucial for geodynamics since they govern rock deformation and
metamorphic reactions. However, the magnitudes and distribution of crustal stresses are still uncertain. Here, we
use a 3D numerical model in spherical coordinates to investigate stresses and velocities that result from lateral
crustal thickness variations around continental plateaus like those observed for the Tibetan plateau. We do not
consider any far‐field deformation so that the plateau deforms by horizontal dilatation and vertical thinning. We
assume viscous creep, a simplified plateau geometry, and simplified viscosity and density distributions to
couple the numerical results with a scaling analysis. Specifically, we study the impact of the viscosity ratio
between crust and lithospheric mantle, a rectangular plateau corner, a stress‐dependent power‐law flow law and
Earth's double curvature on the crustal stress field and horizontal velocities. Two orders of magnitude variation
in crustal and lithospheric mantle viscosities change the maximum crustal differential stress only by a factor of
≈2. We derive simple analytical estimates for the crustal deviatoric stress and horizontal velocity which agree to
first order with 3D numerical calculations. We apply these estimates to calculate the average crustal viscosity in
the eastern Tibetan plateau as≈1022 Pa · s. Furthermore, our results show that a corner strongly affects the stress
distribution, particularly the shear stresses, while Earth's curvature has a minor impact on the stresses. We
further discuss potential implications of our results to strike‐slip faulting and fast exhumation around the
Tibetan plateau's syntaxes.

Plain Language Summary This study focuses on understanding the stresses in the Earth's crust,
which is crucial for understanding how rocks deform and undergo chemical reactions. However, there is still
uncertainty about the exact magnitudes and distribution of these stresses, especially in three dimensions (3D).
To estimate long‐term stresses in the lithosphere, scientists often use observed variations in the thickness of the
Earth's crust around continental plateaus, like the Tibetan plateau which has an average altitude of
approximately 5 km. The plateaus we study will flow apart under gravity on geological time scales to reduce the
altitude difference between the plateau and neighboring lowlands, a process often termed gravitational collapse.
Here, a 3D numerical model is used to explore the magnitudes and distribution of stress around these plateaus.
The study considers factors like variations in the viscosity (a measure of a material's resistance to flow) of
different parts of the lithosphere and the Earth's curvature. We derive simple mathematical equations to estimate
the crustal stress and horizontal velocity and we test these estimates with the results of the performed 3D
numerical calculations. The results further show that Earth's curvature has a minor impact on the stress
distribution.

1. Introduction
Stress is a crucial quantity for geodynamic processes since it governs rock deformation (e.g., Karato, 2008;
Turcotte & Schubert, 2014) and metamorphic reactions (e.g., Philpotts & Ague, 2022). Hence, many studies have
focused on various aspects of stresses in the lithosphere, such as their sources, magnitude, distribution, or
orientation (e.g., Artyushkov, 1973; Bott & Kusznir, 1984; Engelder, 2014; Frank, 1972; McGarr & Gay, 1978;
Turcotte & Oxburgh, 1976; Zoback, 1992). It has been known for more than a hundred years that the existence of
dry land and any differences in height on the Earth's surface is decisive evidence that the stress in the Earth is not
hydrostatic, or lithostatic (e.g., Darwin, 1882; Jeffreys, 1932). Therefore, mountain ranges, continental plateaus,
and continental tectonic plates cannot be in a lithostatic state of stress and must exhibit differential stresses, even if
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they do not deform significantly (e.g., Frank, 1972; Jeffreys, 1932). However,
the magnitudes of these differential stresses in the lithosphere, especially in
the continental crust, remain still debated (e.g., Hardebeck & Okada, 2018;
Kanamori, 1980). For example, the median value of stress drop from earth-
quakes is approximately 4 MPa for all fault types and this value is approxi-
mately constant with depth (e.g., Allmann & Shearer, 2009). Some studies
propose that such stress drops measure a quantity that is close to the total
crustal stress because of, for example, the rotation of the principal stress axes
following earthquakes (e.g., Hardebeck & Okada, 2018). Such studies imply
that the continental crust is mechanically weak (e.g., Hardebeck &
Okada, 2018). In contrast, stress estimates from, for example, boreholes
provide differential stresses of ≈150 MPa at a depth of 8 km (Townend &
Zoback, 2000). Such studies imply that the continental crust, at least the upper
crust, is mechanically strong.

Here, we apply a scaling analysis in combination with 3D numerical calcu-
lations to estimate crustal stresses around continental plateaus. In the absence
of any far‐field deformation, a continental plateau will deform by horizontal
dilatation and vertical thinning, a process that is frequently termed gravita-
tional collapse (e.g., Rey et al., 2001). A common method to estimate the
vertically averaged lithospheric stress around continental plateaus, or
mountains in general, is based on vertical integrals of the two‐dimensional
(2D) force balance equations (e.g., Dalmayrac & Molnar, 1981; Fleitout &
Froidevaux, 1982; Molnar & Lyon‐Caen, 1988). With this method, the ver-
tical integral of the horizontal differential stress across the lithosphere can be
estimated from the lateral variations of crustal thickness and topography (e.g.,
Artyushkov, 1973; Frank, 1972; Jeffreys, 1932) or, more generally, from
lateral variations of the gravitational potential energy per unit area, GPE (e.g.,
Molnar & Lyon‐Caen, 1988; Molnar et al., 1993; Parsons & Richter, 1980;
Schmalholz et al., 2014, 2019). These integrated stress estimates result from
the force balance in the lithosphere and are, hence, robust because they are
independent of constitutive equations, such as creep flow laws, and require
only representative values for topography, crustal thickness, and densities of
the crust and lithospheric mantle, which are well constrained (Figure 1). We
consider here typical values for topography, crustal thickness, and densities
for the Tibetan plateau. The Tibetan plateau is the largest continental plateau
on Earth, exhibiting an average topography of ≈5 km and a crustal thickness
of ≈70 km (e.g., Kind et al., 2002; Nábělek et al., 2009; Royden et al., 2008)
(Figure 1). For the Tibetan plateau, GPE‐based estimates for the vertically
integrated stress vary between 0.7 · 1013 and 1013 N/m (Figure 1c), and the
corresponding vertically averaged stresses are between 70 and 100 MPa for a
100 km thick lithosphere (e.g., Molnar & Lyon‐Caen, 1988; Molnar et al.,
1993; Schmalholz et al., 2014, 2019).

The disadvantage of the GPE‐based stress estimates is that they cannot
resolve the relative magnitudes of stresses in the crust and lithospheric mantle. Therefore, the relative contri-
butions of the continental crust and the lithospheric mantle to the long‐term stress and strength of the lithosphere
remain unclear. For example, some studies on the Tien Shan propose that the major part (up to 90%) of the
lithospheric strength resides in the ductile lithospheric mantle (e.g., England & Molnar, 2015). In contrast, other
studies argue that a significant part of the lithospheric strength, required to support the Tibetan plateau, resides in
the seismogenic upper crust (e.g., Flesch et al., 2001). A strong crust is also supported by full 2D numerical
lithospheric models, considering vertical viscosity and stress variations (Schmalholz et al., 2019). These 2D
models show that the topographic variation between the Tibetan plateau and lowland essentially disappears due to
horizontal dilatation and vertical thinning within less than 1 Myr if shear stresses in the crust are limited to 5 MPa
(like the median value of stress drops), even for a lithospheric mantle with significant strength (Schmalholz

Figure 1. Map view of the (a) topography, (b) crustal thickness, and
(c) lateral variations of gravitational potential energy per unit area (ΔGPE)
of the Tibetan plateau and its surroundings using the CRUST 1.0 data set
(http://igppweb.ucsd.edu/̃gabi/rem.html). The black rectangle indicates the
region in which the Longmen Shan is located and the two dashed rectangles
indicate the regions in which the two syntaxes are located (see Section 4.9).
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et al., 2019). These 2D numerical models suggest that stress magnitudes in the crust must be considerably larger
than 5 MPa, at least in some crustal levels such as the seismogenic upper crust, and that a strong lithospheric
mantle alone is not sufficient to support the Tibetan plateau (Schmalholz et al., 2019).

To estimate crustal stresses and horizontal velocities around a continental plateau, we apply a 3D numerical model
in which the viscosity of the crust and lithospheric mantle can be different. We consider both linear and power‐law
viscous flow. We apply a 3D model because we also want to quantify the impact of the plateau's corner on the
stress field. The impact of corners was studied also with so‐called thin viscous sheet models that are based on
vertical integrals of the 3D force balance equations (e.g., Bird & Piper, 1980; England & Houseman, 1988;
England & McKenzie, 1982; Houseman & England, 1986; Medvedev & Podladchikov, 1999). However, such
thin viscous sheet models do not consider the rheological layering of the lithosphere, such as different viscosities
of the crust and lithospheric mantle, as we consider here. We consider here a rectangular corner geometry to
quantify the first‐order impact of lateral geometrical variations on the stress field, particularly on the horizontal

Figure 2. (a) Sketch of a circular segment indicating the geometric quantities used for the shallow sheet scaling. R, Earth's radius; A, arc length; C, chord length; D,
height of segment; α, central angle. (b) Spherical coordinate system. The model domain (blue box) is defined at the surface of a sphere of various radii (e.g., the Earth's
radius). (c) Model configuration, for simplicity sketched in Cartesian coordinates: a cube of size 565 km vertically and 1,400 km · 1,400 km horizontally, composed by
four different layers representing the mantle, the lithospheric mantle, the continental crust, and sticky‐air, from bottom to top. A continental plateau in isostatic
equilibrium is defined on a quarter of the domain. Gravity acts in the vertical, r‐direction.
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and vertical shear stresses. To evaluate the impact of both vertical viscosity variations and lateral geometry
variations on the lithospheric stress field, full 3D numerical models are required (e.g., Bischoff & Flesch, 2019; L.
Chen et al., 2020; Lechmann et al., 2014; Pusok &Kaus, 2015; Yang et al., 2020; P. Zhang et al., 2022). However,
essentially all 3D numerical models focusing on the Tibetan plateau employ a rectangular model geometry and do
not consider the potential impact of Earth's double curvature (e.g., L. Chen et al., 2020; Lechmann et al., 2014;
Yang et al., 2020; P. Zhang et al., 2022). The double curvature of the Earth's lithosphere could potentially have an
impact on its mechanical strength and stress state because mechanical studies demonstrate that small amounts of
bending of plates reinforce the mechanical stability of thin sheets (e.g., Pini et al., 2016). Therefore, we evaluate
here also the impact of curvature on the stress field around continental plateaus by comparing the results of a
rectangular model with the results of spherical models having different radii of curvature.

Table 1
Mathematical Symbols Used in the Text

Symbol Name or definition Unit

Lr, Lθ, Lφ Height, width, length of the model domain [m]

r, θ, φ Spherical coordinates [m], [rad], [rad]

R Radius [m]

H Thickness of the lithosphere [m]

A, C, D Arc length, chord length, height of circular segment [m]

hs, hst Sticky‐air thickness [m]

ha Altitude of the plateau [m]

hc Crustal thickness in the lowland [m]

hr Root thickness [m]

hl Lithospheric mantle thickness [m]

hm Mantle thickness [m]

L Length scale [m]

λ Width of a two‐sided wedge [m]

ρa Sticky‐air density [kg/m3]

ρc, ρl, ρm Crustal, lithospheric mantle, mantle densities [kg/m3]

ηa, ηst Sticky‐air viscosity [Pa · s]

ηc, ηl, ηm Crustal, lithospheric mantle, mantle viscosities [Pa · s]

η Linear viscosity [Pa · s]

ηE, ηcE Effective viscosity [Pa · s]

ηch Characteristic viscosity [Pa · s]

α Central angle [°]

g Gravitational acceleration [m/s2]

ΔGPE Variations in gravitational potential energy [N/m]

τC Characteristic stress [Pa]

τ, τe Deviatoric stress, estimated deviatoric stress [Pa]

τII Second invariant of the deviatoric stress tensor [Pa]

(σ1 − σ3) Differential stress [Pa]

ϵ̇ Strain rate [1/year]

ϵ̇II Second invariant of the strain rate tensor [1/year]

Vs, Ve Horizontal velocity, estimated horizontal velocity [cm/year]

VePL Estimated horizontal velocity for power‐law viscous crust [cm/year]

Vbs Basal shear velocity [cm/year]

n Power‐law stress exponent [− ]
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In our study, we aim (a) to quantify the magnitudes of differential stresses and
horizontal velocities in the crust around continental plateaus, (b) to study the
impact of viscosity differences between the crust and lithospheric mantle on
the stress field and horizontal velocities, (c) to evaluate the impact of a
rectangular corner on normal and shear stresses in the crust, (d) to investigate
the impact of a stress‐dependent, power‐law viscous flow law on the crustal
stress field and horizontal velocities, (e) to quantify the impact of double
curvature on the stress field around continental plateaus and (f) to estimate
deviatoric stresses, horizontal velocities and viscosities of the crust with
simple analytical expressions.

2. Model
2.1. Geometrical Shallow Sheet Scaling for the Impact of Curvature

We start with a simple scaling analysis for the impact of curvature on our
model for a continental plateau. We will consider in our model a lithosphere
with lateral dimensions, L, of 1,400 km (Figure 2; the model configuration
will be discussed in detail in Section 2.4). Considering the Earth's curvature,
this lateral dimension corresponds to an arc length, A, on the curved Earth's
surface (Figure 2a). All symbols used in the text are explained in Table 1 and
the values applied in the calculations are given in Table 2. Our modeled
lithosphere has a thickness, H, of 150 km. The lithosphere can be considered
as a thin‐shell because its thickness is much smaller than both its lateral
dimension, and the radius of curvature of the Earth, R = 6,371 km (e.g.,
Ribe, 2002, 2018). Following Ribe (2018), we refer to a viscous shell as a
sheet. Our model lithosphere can be considered as a shallow sheet if its
“midsurface departs from a reference plane by an amount much smaller than
its principal radii of curvature” (Ribe, 2018). To estimate the midsurface

departure, we consider the chord, with length C, as the reference plane and the arc, with length A, as the curved
midsurface (Figure 2a). The height of the circular segment represents the maximum departure, D, of the arc from
the chord (Figure 2a). The height of the circular segmentD = R(1 − cos(α/2)), where α is the central angle that is
given by α = A/R (e.g., Bronstein et al., 2015) (Figure 2a). For A = 1,400 km and R = 6,371 km, α = ≈12.6° and
D = ≈38.4 km. The ratio D/R = 0.006 and is, hence, significantly smaller than one. Therefore, the lithosphere in
our model can be considered as a shallow sheet. Consequently, the differences in stress and velocity between a flat
lithosphere and a curved lithosphere are likely in the order of the value ofH/L ≈ 0.1 (e.g., Ribe, 2018). Hence, we
do not expect significant differences between the results of a flat and curved lithosphere. We will quantify these
differences with 3D numerical calculations for a flat and several curved model geometries. A more detailed
scaling analysis concerning thin shells is beyond the scope of this study and can be found in Ribe (2018).

2.2. Analytical Estimates for Stress and Velocity

Stress magnitudes in the lithosphere around continental plateaus can be estimated from lateral variations, or
differences, of the gravitational potential energy per unit area, GPE (e.g., Dalmayrac & Molnar, 1981; Jef-
freys, 1932; Molnar & Lyon‐Caen, 1988). The GPE is the vertical integral of the lithostatic pressure (e.g.,
Molnar & Lyon‐Caen, 1988). The difference in GPE, ΔGPE, between plateau and surrounding lowland is given
by (e.g., Molnar & Lyon‐Caen, 1988; Schmalholz et al., 2014)

ΔGPE = ρcgha(hc +
ρl

ρl − ρc
ha
2
) (1)

where ρc, ρl, hc, ha and g are the crustal density, the lithospheric mantle density, the crustal thickness of the
lowland, the altitude of the plateau and the gravitational acceleration, respectively (Figure 2c). The above
expression for ΔGPE is derived assuming Airy isostasy (e.g., Molnar & Lyon‐Caen, 1988; Schmalholz
et al., 2014). The magnitude of ΔGPE corresponds to the horizontal driving force per unit length that is required to

Table 2
Values Used in This Study

Variable Value

Lr · Lθ · Lφ 565 km · 1,400 km · 1,400 km

R 6,371 · 103 km, 6,371 km, 3,390 km,
1,737 km

hs 50 km

ha 5 km

hc 35 km

hr 28 km

hl 87 km

hm 360 km

ρa 0 kg/m3

ρc 2,800 kg/m3

ρl 3,300 kg/m3

ρm 3,300 kg/m3

ηa 5 · 1018 Pa · s

ηc 1020–1022 Pa · s

ηl 1020, 1021, 1022 Pa · s

ηm 1020 Pa · s

g 9.81 m/s2

τC 24 MPa

n 1, 3, 6
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mechanically support a continental plateau (e.g., Molnar & Lyon‐Caen, 1988). Schmalholz et al. (2014) provide
an estimate for the magnitude of the horizontal deviatoric stress, τe, that is vertically averaged across the crust:

τe ≈
ΔGPE

2(2hc + ha + hr)
(2)

where hr is the thickness of the crustal root under the plateau (Figure 2c). Using the isostatic relation

hr =
ρcha
ρl − ρc

(3)

and the expression for ΔGPE from Equation 1 yields an expression for τe in the form of

τe ≈
ρcgha
4

. (4)

This stress estimate is independent of rheological parameters such as viscosity.

The ΔGPE between plateau and lowland will cause horizontal dilatation and vertical thinning of the continental
plateau, a process often referred to as gravitational collapse (e.g., Rey et al., 2001). We assume that the crust
behaves like a linear viscous fluid. The deviatoric stress, τe, in the crust generates a strain rate, ϵ̇, which depends
on the crustal viscosity, ηc, and is given by the linear viscous flow law:

ϵ̇ =
τe
2ηc

. (5)

We assume that ϵ̇ can be approximated by the ratio of the horizontal velocity, Ve, to a characteristic length, L, over
which the horizontal extension of the plateau occurs:

ϵ̇ ≈
Ve
L
. (6)

Using Equations 4–6, we obtain an estimate for Ve:

Ve ≈
ρcghaL
8ηc

. (7)

We will use the results of 3D numerical calculations to test the applicability of the estimate for the stress,
Equation 4, to determine the characteristic length, L, and to test the estimate for the velocity Ve, Equation 7.

To assess the impact of more complicated viscous flow laws, we consider also a stress‐dependent viscosity (e.g.,
Karato, 2008). We apply a combination of a linear and power‐law viscous flow law for which the effective crustal
viscosity, ηcE, is

ηcE =
2ηc

1 + (
τe
τC)

(n− 1) (8)

where n is the power‐law stress exponent. For the analytical estimate, we assume that the effective viscosity is
controlled by the deviatoric stress estimate, τe. τC defines the stress magnitude at which the deformation behavior
changes from a linear viscous flow law to a power‐law viscous flow law (e.g., Macherel, Podladchikov,
et al., 2023; Schmalholz & Podladchikov, 2013). If n = 1, then ηcE = ηc, and the flow is linear viscous. For n > 1,
ηcE < ηc if τe > τC, an effect often referred to as stress weakening. If τe would become infinitely large, then ηcE
would approach zero. Hence, the minimal possible value of ηcE = 0. Conversely, for n > 1, ηcE > ηc if τe < τC,
representing a hardening effect. If τe goes to zero then ηcE goes to 2ηc. Hence, the maximal possible value of
ηcE= 2ηc. The applied stress‐dependent flow law, Equation 8, is useful to assess the impact of both weakening and
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hardening compared to a linear viscosity, ηc, for n = 1. The flow law of Equation 8 is also frequently applied
without the factor of 2 in the numerator to mimic a combined flow law with diffusion and dislocation creep. The
difference compared to ηcE in Equation 8 is that for n = 1 the effective viscosity does not correspond to the linear
viscosity.

To derive an equation for Ve for a power‐law viscous crust, we use Equation 4 to replace τe in Equation 8 and then
use this new expression for ηcE to replace ηc in Equation 7. The velocity estimate for a power‐law viscous crust,
VePL, is then:

VePL ≈
ρcghaL
16ηc

(1 + (
ρcgha
4τC

)

(n− 1)

). (9)

We normalize VePL by the velocity estimate for linear viscous flow for n = 1, Ve, to obtain a dimensionless
velocity of the form

VePL
Ve

≈
1
2
(1 + (

ρcgha
4τC

)

(n− 1)

). (10)

We will compare the analytical estimates for the velocity for stress‐dependent viscosities with the results of 3D
numerical calculations.

2.3. Mathematical Model

We apply the so‐called Stokes equations for slow, incompressible viscous flow under gravity in 3D (e.g., Mal-
vern, 1969; Turcotte & Schubert, 2014). We consider a spherical coordinate system (Figure 2b). The corre-
sponding equations of mass conservation and linear momentum conservation are displayed in Appendix A1. As
for the analytical estimate, we employ a combination of a linear and power‐law viscous flow law for which the
effective viscosity, ηE, is (e.g., Gerya, 2019; Schmalholz & Podladchikov, 2013):

ηE =
2η

1 + (
τII
τC
)
(n− 1) (11)

where η is the linear viscosity for n = 1, n is again the stress exponent and τC is again the characteristic stress
controlling the transition from linear to power‐law viscous flow. For the simulated 3D viscous flow, the stress
magnitude that controls the effective viscosity is quantified by τII which is the second invariant of the deviatoric
stress tensor and given by

τII =
̅̅̅̅̅̅̅̅̅̅̅

0.5 τ2ij
√

(12)

where symbols τij represent the components of the deviatoric stress tensor, indices i and j represent the spherical
coordinates r, θ, and φ, and the Einstein summation convention applies (Appendix A1 and Figure 2b). We apply
the effective viscosity, ηE, in a flow law for the 3D viscous flow calculations:

τij = 2ηEϵ̇ij (13)

where ϵ̇ij are the components of the deviatoric strain rate tensor. The applied flow law for the individual stress
tensor and strain rate tensor components are given in Appendix A1. The applied numerical algorithm is written for
spherical coordinates and the numerical method to solve the governing system of equations is described in
Appendix A2.
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2.4. Model Configuration

In the applied spherical coordinate system, r is the radial direction, θ is the polar angle (θ ∈ [0; π/2]) and φ is the
azimuthal angle (φ ∈ [0; 2π]; see Figure 2b). The geometry of the model domain represents a small 3D region
from a sphere and its shape is like a rectangular cuboid that is deformed to adapt to the spherical geometry
(Figure 2b). The model domain has a size of 565 km vertically and 1,400 km · 1,400 km horizontally measured at
the surface of the sphere (Figure 2b). A continental plateau is configured on a quarter of the model domain with a
horizontal size of 600 km · 600 km and a transition zone between the plateau and the surrounding lowland with a
width of 100 km (Figure 2b). The model domain represents a quarter of a larger, quadratic (in map view) plateau
that is entirely surrounded by lowland. The lateral model sides at Y = − 700 km and X = − 700 km, bounding the
plateau in our model domain (see Figure 2b), represent symmetry planes for the deformation of the larger plateau
that is entirely surrounded by lowland.

Vertically, the model domain is divided into four different layers, or model units, representing, from bottom to
top, the asthenospheric mantle (referred to simply as mantle in the following), the lithospheric mantle, the
continental crust, and a zero‐density, weak layer that represents air, sometimes referred to as sticky‐air layer (e.g.,
Crameri et al., 2012). The bottom layer has a constant thickness of 360 km, a density of 3,300 kg/m3 and a linear
viscosity of 1020 Pa · s. The lithospheric mantle has a thickness of 115 km below the lowland and 87 km below the
plateau. It has a density of 3,300 kg/m3 and we apply linear viscosities of 1020, 1021, and 1022 Pa · s in different
simulations. The continental crust in the lowland is 35 km thick, to which are added 5 km of elevation and 28 km
of root to form a plateau in isostatic equilibrium (e.g., Schmalholz et al., 2014). It has a density of 2,800 kg/m3 and
we vary its viscosity between 1020 and 1022 Pa · s in different simulations.

The sticky‐air layer is applied to allow the surface of the crust to behave essentially as a free surface. It has a
thickness of 55 km over the lowland and of 50 km over the plateau. Its density is 0 kg/m3 and its linear viscosity is
5 · 1018 Pa · s. The thickness and the viscosity of the sticky‐air layer have been chosen following a criterion
defined by Crameri et al. (2012). This criterion guarantees that the sticky‐air layer is sufficiently weak and thick to
mimic a free surface boundary condition. The ratio (ηst/ηch)/ (hst/L)

3 has to be significantly smaller than one,
where ηst and ηch are the viscosity of the sticky‐air and a characteristic viscosity value, respectively, hst is the
sticky‐air thickness and L is a characteristic length of the model. For the values used in this study,
ηst= 5 · 10

18 Pa · s and hst= 50 km.We consider ηch= 10
20–1022 Pa · s and the order of magnitude of L is 100 km.

Then, the ratio (ηst/ηch)/ (hst/L)
3 ranges between 0.004 and 0.4. The applied sticky‐air layer is, hence, suitable to

mimic a free surface boundary condition. The boundary conditions applied in this study are free slip on each
lateral side and at the top and bottom of the model domain. We do not prescribe any boundary velocity so that
gravity, pointing toward the center of the coordinate system along direction r, is the only driving force acting in
the model domain. The applied numerical resolution is 804 m vertically and 7.07 km horizontally, resulting from a
numerical mesh with 703 · 199 · 199 grid points.

The applied model geometry and densities generate a ΔGPE between the plateau and the lowlands of ≈7 · 1012 N/
m. A ΔGPE of ≈7 · 1012 N/m has been typically used in theoretical GPE studies applied to the Tibetan plateau
(e.g., Molnar & Lyon‐Caen, 1988; Schmalholz et al., 2014) and is a representative value of ΔGPE between the
Tibetan plateau and its surrounding lowlands resulting from the CRUST1.0 data set (Laske et al., 2013)
(Figure 1c).

Parameters related to the power‐law flow law are the power‐law exponent, n, and the characteristic stress, τC. In
this study, we test three different values for the power‐law exponent, n = 1 (linear viscous), n = 3 and n = 6. The
values of n > 1 are only tested for a crustal linear viscosity ηc = 10

22 Pa · s in the equation for the effective
viscosity, ηE (Equation 11). We investigate the impact of one value only for the characteristic stress τC and use
τC = 24 MPa. We choose this value because it represents average values of crustal stress. Hence, some crustal
regions will exhibit stresses >τC, and undergo stress weakening, and other regions will exhibit stresses <τC, and
undergo hardening.

The calculations are donewith values in dimensionless form. Three characteristic scales are used to scale the results
back to real physical units: one characteristic scale for length, which is the total height of the model domain; one
scale for viscosity, which is the linear mantle viscosity; and one scale for density, which is the mantle density.
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3. Results
3.1. Overview

We begin by presenting the 3D stress field for two representative simulations with linear viscous flow: A
simulation with a mechanically strong crust (1022 Pa · s) and a weak lithospheric mantle (1020 Pa · s), referred to as
model SC_WL in the following, and another simulation with a strong lithospheric mantle (1022 Pa · s) and crust
with intermediate strength (1021 Pa · s), referred to as IC_SL. Next, we show the results of systematic simulations
that evaluate the impact of the viscosity ratio between the crust and lithospheric mantle on the stress field and
horizontal velocity. Afterward, we present results that show the impact of a rectangular corner on the stress field
and simulations that show the impact of a power‐law viscous flow law. Subsequently, we compare simulations

Figure 3. 3D visualization of deviatoric normal stresses in the direction parallel to the X‐direction (panels a, e), parallel to Y (b, f), and parallel to Z (c, g). Panels (d) and
(h) display the differential stress (σ1 − σ3). Panels (a)–(d) show results for a simulation with a strong crust (10

22 Pa · s) and a weak lithospheric mantle (1020 Pa · s), model
SC_WL, and panels (e)–(h) for a simulation with an intermediate crust (1021 Pa · s) and a strong lithospheric mantle (1022 Pa · s), model IC_SL. Positive and negative
deviatoric stress values indicate extensional and compressive stresses, respectively. These simulations are performed with the Earth's curvature and for linear viscous
flow.
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with and without curvature to quantify the impact of lithospheric curvature on the stress field. Finally, we apply
the numerical results to our scaling analysis and compare the analytical estimates for stress and velocity presented
in Section 2.2 with the numerical results.

All numerical calculations are done for a curved model geometry corresponding to the curvature of the Earth,
except the simulations that are performed to test the impact of curvature. For each model configuration, we have
calculated a single time step to obtain the instantaneous 3D stress and velocity fields. For visualization reasons,
we display the results for the spherical coordinates in a Cartesian coordinate system.

3.2. General Stress State Around a Continental Plateau

Figure 3 shows for two simulations (Figures 3a–3d: SC_WL and Figures 3e–3h: IC_SL) the three deviatoric
normal stresses in the three spatial directions and the differential stress (σ1 − σ3), that is the difference between the
largest and the smallest principal stress at each numerical grid point of the model domain.

For the model SC_WL, high stress magnitudes are inside the crust and are essentially zero in the mantle and
lithospheric mantle (Figures 3a–3d). Conversely, for the model IC_SL, stress magnitudes are larger in the lith-
ospheric mantle compared to the crust (Figures 3e–3h). In general, in both horizontal directions, the same stress
pattern is visible: an extension of the plateau (positive deviatoric stresses) and a compression of the surrounding
lowland (negative deviatoric stresses). This stress pattern represents the horizontal dilatation of the continental
plateau. The negative vertical deviatoric stress values located inside the plateau indicate a vertical thinning of the
crust (Figures 3c and 3g). Furthermore, the magnitudes of the vertical deviatoric stresses are twice larger than the
ones of the horizontal deviatoric stresses. The relation between the deviatoric normal stresses is constrained
because the sum of the deviatoric normal stresses is zero by definition (e.g., Malvern, 1969).

Figure 3d shows that for model SC_WL the largest differential stresses are located inside the plateau. The largest
differential stresses for model IC_SL are located below the plateau at the top of the lithospheric mantle
(Figure 3h). Differential stresses are also high below the lowlands at the top of the lithospheric mantle (Figure 3h).

In summary, the ratio of crustal viscosity to the lithospheric mantle viscosity has a major impact on the distri-
bution and magnitude of stresses in the crust and lithospheric mantle. If the lithospheric mantle is weak, then

Figure 4. Vertical cross‐sections at profile location HP1 for different models showing differential stress. Differential stress for crustal viscosities of 1020 Pa · s (a–c),
1021 Pa · s (d–f) and 1022 Pa · s (g–i) and lithospheric mantle viscosities of 1020 Pa · s (a, d, g), 1021 Pa · s (b, e, h) and 1022 Pa · s (c, f, i). The thick contour lines indicate
horizontal velocities of black: 4 cm/year, blue: 10 cm/year, and red: 20 cm/year. The thin black lines display the limits between the continental crust, the lithospheric
mantle, and the mantle. These simulations are done using the Earth's curvature and linear viscous flow.
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stresses are concentrated in the crust, a phenomenon often referred to as stress
amplification (e.g., Bott & Kusznir, 1984).

3.3. Impact of the Crust and Mantle Strength

We present the results of 18 simulations with various viscosities for the crust
and lithospheric mantle to determine what crustal viscosities are required to
prevent the continental plateau from horizontal flow with unrealistically fast
velocities. In our viscous model, the plateau will always flow apart as long as
there are lateral variations in GPE, but the horizontal velocities will be
negligible if the viscosities are sufficiently large. We consider a model un-
realistic if the maximum horizontal velocity exceeds 4 cm/year. The 4 cm/
year corresponds approximately to the current indentation velocity of India
(e.g., Liang et al., 2013). Such indentation velocity could theoretically bal-
ance a spreading velocity of the same magnitude. However, spreading ve-
locities along the northern limit of the Tibetan plateau are smaller than 4 cm/
year (e.g., Liang et al., 2013), so that 4 cm/year represents a maximal value of
acceptable velocities.

Figure 4 displays the differential stress distribution in cross‐sections at
500 km from the edge of the plateau (at position Y = − 600 km; see also
profile location HP1 in Figure 7). Contours represent horizontal velocities of
4, 10, and 20 cm/year (black, blue and red contours, respectively). In the case
of a weak crust (1020 Pa · s) and a weak lithospheric mantle (1020 Pa · s),
stresses are small and velocities are unrealistically large (up to 70 cm/year).
An increase of viscosity of either the crust or the lithospheric mantle leads to
smaller velocities (Figure 4). A strong lithospheric mantle associated with a

weak crust still allows the plateau to spread with unrealistic velocities >20 cm/year (Figure 4c). On the other
hand, a strong crust (1022 Pa · s) overlying a weak lithospheric mantle (1020 Pa · s) exhibits a maximum velocity
<4 cm/year (Figure 4g). Moreover, stresses are focusing in the strong layer, which leads to different stress
distribution and magnitudes in the crust above a strong lithospheric mantle.

Figure 5 displays the maximum horizontal velocity, Vs =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

V2φ + V2θ
√

, in the entire crust as a function of the crustal

viscosity. It shows more clearly the tendency observed in Figure 4, that the larger the crustal viscosity, the slower

Figure 5. Maximum values of the horizontal velocity, Vs, in the entire crust
for models with varying viscosities of the crust and lithospheric mantle. The
horizontal axis indicates the crustal viscosity and the color the viscosity of
the lithospheric mantle. All results are for models with Earth's curvature and
linear viscous flow.

Figure 6. Relation between the maximum crustal differential stress and (a) the maximum horizontal crustal velocity, and (b) the maximum crustal strain rate invariant for
models with varying viscosities of the crust and lithospheric mantle. Different crustal (size of markers) and lithospheric mantle (color of markers) viscosities are
indicated in the legend of panel (b). All simulations are performed with Earth's curvature and linear viscous flow.
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the velocity. For the same crustal viscosities, larger viscosities of the lithospheric mantle cause smaller velocities.
Six of our 18 simulations provided velocities smaller than 4 cm/year, all for a crustal viscosity of at least
3 · 1021 Pa · s.

In addition, Figure 6 presents the relation between the maximum differential stress in the crust and the maximum

velocity (Figure 6a) and the maximum strain rate invariant (ϵ̇II =
̅̅̅̅̅̅̅̅̅̅̅̅

0.5 ϵ̇2ij
√

) in the crust (Figure 6b). There is no

clear correlation between these quantities. Similar stress magnitudes can lead to considerably different velocities
or strain rates. For a strong lithospheric mantle, the crustal stress magnitudes do not systematically decrease with

Figure 7. Stress distributions for model SC_WL with Earth's curvature and linear viscous flow. (a, d) Map views. Projection
on a flat plane of stresses following the curvature at 15 km depth. (b, e) Horizontal profiles of stresses at 15 km depth and
vertically averaged across the crust. Blue line (Profile HP1) is a profile 500 km away from the edge of the plateau and red line
(Profile HP2) is inside of the transition between the plateau and the lowland. Panels (a) and (b) display the horizontal
deviatoric stress τφφ and panels (d) and (e) display the horizontal shear stress τθφ. Panels (c) and (f) display vertical profiles of
horizontal deviatoric stress and vertical shear stress, respectively. The location of the profiles are indicated in panel (d) by
VP1 and VP2. The black lines on panels (a) and (d) represent the position of the plateau at the surface and the arrows are the
velocity field.
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decreasing crustal viscosities (Figure 6a). The reason is that a weaker crust flows faster and hence generates
higher strain rates (Figure 6). These higher strain rates cause higher stresses and can balance the decrease in
viscosity to maintain similar stress magnitudes. Magnitudes of stress are hence not a reliable proxy for litho-
spheric strength which is governed by the effective viscosity.

3.4. Impact of a Rectangular Corner

For model SC_WL, Figure 7a displays the deviatoric normal stress at 15 km depth in map view. The horizontal
velocities indicate that the plateau flows apart (Figure 7a). Laterally far away from the corner, the horizontal

Figure 8. Stress distributions for model IC_SL with Earth's curvature and linear viscous flow. (a, d) Map views. Projection on
a flat plane of stresses following the curvature at 15 km depth. (b, e) Horizontal profiles of stresses at 15 km depth and
vertically averaged across the crust. Blue line (Profile HP1) is a profile 500 km away from the edge of the plateau and red line
(Profile HP2) is inside of the transition between the plateau and the lowland. Panels (a) and (b) display the horizontal
deviatoric stress τφφ and panels (d) and (e) display the horizontal shear stress τθφ. Panels (c) and (f) display vertical profiles of
horizontal deviatoric stress and vertical shear stress, respectively. The location of the profiles are indicated in panel (d) by
VP1 and VP2. The black lines on panels (a) and (d) represent the position of the plateau at the surface and the arrows are the
velocity field.
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velocities have a direction that is orthogonal to the plateau boundary in map view (Figure 7a). Along the plateau
boundary in map view, the direction of the horizontal velocities becomes less orthogonal the closer the velocities
are to the corner (Figure 7a). Due to the rectangular shape of the corner in map view, the horizontal velocities have
an orientation of 45° at the corner point at the position X = 0 [km] and Y = 0 [km] (Figure 7a). The horizontal
deviatoric normal stresses away from the corner and orthogonal to the plateau boundary are highest around the
plateau boundary, for example, for τφφ along profile HP1 (Figure 7b). Magnitudes of τφφ decrease toward the
corner (profile HP2 in Figure 7a). This is visible in Figure 7b which shows about 10 MPa difference in absolute
stress magnitudes between the two profiles. For comparison, we show two profiles for two stress magnitudes: a
profile of the stress at 15 km depth (solid line in Figures 7b and 7e) and a profile for the corresponding stress that is
vertically averaged across the crust (dashed lines). Both stress profiles are similar (Figure 7b).

Figure 7d displays the horizontal shear stress at 15 km depth in map view. Shear stresses are significant only in the
corner region with magnitudes of up to more than 30 MPa. The shear stresses increase nonlinearly toward the

Figure 9. Map views showing the lateral distribution of maximum differential stress and horizontal velocities for models SC_WL and IC_SL. Maximum value in the
crust at every horizontal position of differential stress (a, c), and horizontal velocity (b, d). Panels (a) and (b) display the simulation with the model SC_WL, and panels
(c) and (d) show the simulation with the model IC_SL. The white lines represent the position of the plateau at the surface and the arrows indicate the velocity field. These
simulations are done using the Earth's curvature and linear viscous flow.
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corner, indicated by the concave‐upward curve of shear stress versus distance (Figure 7e). Away from the corner
region, horizontal shear stresses become negligible (Figures 7d and 7e).

We also present representative vertical profiles of normal deviatoric stress and vertical shear stress (Figures 7c
and 7f). Both stresses show a significant vertical variation across the crust. Vertical shear stresses are essentially
zero at the top and bottom of the crust but vary considerably vertically (Figure 7f). Maximum values of vertical
shear stresses reach ≈10 MPa.

As for model SC_WL (Figure 7), we present the same map views and stress profiles for model IC_SL (Figure 8).
Compared to model SC_WL, in model IC_SL the crustal stress magnitudes are smaller, normal deviatoric stresses
reach up to only 20 MPa along profile HP1 and shear stresses reach 30 MPa in the corner region (profile HP2).
However, the general crustal stress pattern is the same in both models, with decreasing normal deviatoric stresses
and larger shear stresses toward the corner. The vertical profile of the vertical shear stresses shows that shear
stresses are largest at the crust‐mantle boundary and that maximum values are ≈35 MPa (Figure 8f).

Figure 9 displays map views of the maximum crustal differential stress and horizontal crustal velocities at each
horizontal position. For each horizontal location, we select the largest crustal value along the vertical profile at

Figure 10. Map views of maximum values of crustal differential stress and effective viscosity for two simulations with power‐law viscous flow with different stress
exponents n. Panels (a)–(f) display results for a simulation with a strong crust (1022 Pa · s) and a weak lithospheric mantle (1020 Pa · s). Panels (g)–(l) display results for a
simulation with a strong crust (1022 Pa · s) and a strong lithospheric mantle (1022 Pa · s). Panels (a), (c), and (e), and panels (g), (i), and (k) display the differential stress.
Panels (b), (d), and (f), and panels (h), (j), and (l) display the effective viscosity. The corresponding stress exponent n is indicated on the left of each of the three rows of
panels. All models are with the Earth's curvature.
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this location. For model SC_WL (Figures 9a and 9b), differential stresses are highest in the plateau and maximum
values are ≈100 MPa (Figure 9a). Conversely, for model IC_SL (Figures 9c and 9d), differential stresses are
largest along the transition zone (Figure 9c). Inside the plateau, differential stresses are smaller than ca. 40 MPa.
The comparison of model SC_WL with IC_SL shows that the viscosity ratio between the crust and lithospheric
mantle has a major impact on the magnitude and distribution of crustal differential stress.

The distribution of maximum crustal horizontal velocities is also different for models SC_WL and IC_SL
(Figures 9b and 9d). For model SC_WL, the velocity magnitudes vary less across the model domain compared to
model IC_SL for which maximum magnitudes are localized along the transition zone. The magnitudes of the
spreading velocities are lager for model IC_SL compared to SC_WL.

In map view, the magnitudes of differential stress and horizontal velocities do not vary significantly along the
transition zone for both simulations with strong and intermediate crust (Figure 9). In other words, only the di-
rections change along the transition zone, but the magnitudes of stress and horizontal velocity change insignif-
icantly. Far away from the corner region, the magnitude contours of normal deviatoric stresses run parallel to the
plateau edge, and shear stresses are negligible. This suggests that far away from the corner region there are no
significant 3D features in the stress field. However, it is important to take into account the 3D characteristics of the
plateau close to the corner region where horizontal shear stresses are significant.

3.5. Impact of a Stress‐Dependent Power‐Law Flow Law

In our combined linear and power‐law viscous flow law, we need to specify the characteristic stress that controls
the transition from linear viscous (e.g., diffusion creep) to power‐law viscous flow (e.g., dislocation creep). We
define τC at 24 MPa. As a consequence, effective viscosity decreases when stresses are larger than τC and in-
creases when stresses are smaller. If we refer in this sub‐section to a viscosity value applied in a model, then we
refer to the linear viscosity, η, used in Equation 11 for the effective viscosity, ηE.

Figure 10 displays map views of differential stress and effective viscosity. For both quantities, we plot the
maximum value of the crust at each horizontal position. Results for a strong crust (1022 Pa · s) and a weak
lithospheric mantle (1020 Pa · s), model SC_WL, show that stress magnitudes decrease and the stress distribution
gets smoother as the power‐law exponent increases (Figures 10a–10f). Also, the effective viscosity varies from a
constant value (linear viscous) to more and more variable values (Figures 10b, 10d, and 10f). Differences in
effective viscosity reach up to one order of magnitude for n = 6 (Figure 10f). In the plateau, where stresses are
high, the effective viscosity for n= 3 and 6 is smaller compared to the linear viscous one. However, far away from
the plateau the stresses are smaller than τC which leads to an increase in effective viscosity.

Figure 11. Variation of the maximum (a) differential stress and (b) horizontal velocity of the entire crust with increasing
power‐law stress exponent n. All simulations are with the Earth's curvature, a crustal viscosity value of η = 1022 Pa · s and
with τC = 24 MPa.
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Results for a strong crust (1022 Pa · s) and a strong lithospheric mantle (1022 Pa · s) show small differences in the
differential stress distribution for increasing values of n (Figures 10g, 10i, and 10k). The reason is that crustal
deviatoric stresses do not significantly exceed the characteristic stress. Hence, the effective viscosity increases
nearly everywhere, except in the transition zone between plateau and lowlands (Figures 10h, 10j, and 10l).

Figure 11 presents the maximum differential stress and horizontal velocity of the entire crust as a function of the
power‐law exponent. For all lithospheric mantle viscosities, the maximum differential stress decreases as the
power‐law exponent increases (Figure 11a). For example, for the model with a lithospheric mantle viscosity of
ηl = 10

21 Pa · s, the maximum differential stress decreases from ≈100 to ≈67 MPa when n increases from 1 to 6
(red curve in Figure 11a). For lithospheric mantle viscosities between ηl = 10

21 Pa · s and ηl = 10
22 Pa · s, the

maximum velocities vary little when n increases (Figure 11b). The velocity increases with increasing n for a
lithospheric mantle viscosity of ηl = 10

20 Pa · s because in this model the crustal stresses are largest and the stress
weakening effect due to power‐law flow is largest.

Figure 12. Cross‐sections at 500 km from the edge of the plateau (Y = − 600 km) showing the differential stress. Different curvatures corresponding to (a, b) negligible
curvature, (c, d) the Earth, (e, f) Mars, and (g, h) the Moon are displayed. Panels (a), (c), (e), and (g) display results for model SC_WL, and panels (b), (d), (f), and
(h) display results for model IC_SL. The contours mark horizontal velocities of 2 cm/year (red) and 1 cm/year (blue). All results are for linear viscous flow.
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The presented results show the general impacts of a power‐law viscous flow on the magnitudes of stress and
spreading velocities. Specific results depend on the applied value of τC but a systematic analysis of the impact of
different values of τC is beyond the scope of our study.

3.6. Impact of the Curvature

To quantify the impact of curvature on the stresses in and around the continental plateau, we modify the radius of
the spherical coordinate system without changing the geometry of the model domain. In other words, the arc
length of the crust stays constant, and as the radius of the sphere decreases the central angle increases. Hence, the
curvature of the domain increases.

Figure 13. Representative vertical profiles of differential stress, (σ1 − σ3), in radial direction for model SC_WL with different curvatures. In panels (a)–(d) the profiles
are taken at 500 km from the edge of the plateau along the Y‐axis (Profile HP1 in Figure 7) and their position in direction X are (a) 500 km from the edge of the plateau,
(b) 5 km from the edge, (c) 5 km after lowland started, and (d) 500 km after the end of the transition between the plateau and the lowland (positions are indicated in the
top panel). In panels (e)–(h), profiles are taken in the middle of the transition zone between the plateau and its surrounding lowlands (Profile HP2 in Figure 7) and are
distributed the same way as the left side along direction X (positions displayed in the top panel). The different lines represent different curvatures (see legend) and the
dashed line marks the limit between the crust and the lithospheric mantle. All of these simulations are done with the model SC_WL. All results are for linear viscous
flow.
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Figure 12 displays the differential stress (σ1 − σ3) for four different curvatures using a radius of curvature cor-
responding to a very large radius to generate essentially no curvature (6,371 · 103 km), the radius of the Earth
(6,371 km), of Mars (3,390 km), and of the Moon (1,737 km).We use these radii for Mars and theMoon simply as
examples to test the impact of increasing curvature. All four curvatures have been tested with model SC_WL and
model IC_SL. To first order, we do not see any significant effect of curvature on the stresses and on the horizontal
velocities. Representative horizontal velocity magnitudes are indicated by the contour lines.

Eight vertical profiles of differential stresses, from two horizontal sections, are compared in Figure 13 for model
SC_WL and in Figure 14 for model IC_SL. The different curvatures are displayed for each vertical profile. There
are two sets with four vertical profiles each. The two sets show vertical profiles that belong to two horizontal
profiles: Profile HP1 (Figures 13a–13d and 14a–14d) is located far away from the corner region and its location is
displayed in Figure 7d. Profile HP2 (Figures 13e–13h and 14e–14h) is located inside the transition zone between

Figure 14. Representative vertical profiles of differential stress, (σ1 − σ3), in radial direction for model IC_SL with different curvatures. In panels (a)–(d) the profiles are
taken at 500 km from the edge of the plateau along the Y‐axis (Profile HP1 in Figure 7) and their position in direction X are (a) 500 km from the edge of the plateau,
(b) 5 km from the edge, (c) 5 km after lowland started, and (d) 500 km after the end of the transition between the plateau and the lowland (positions are indicated in the
top panel). In panels (e)–(h), profiles are taken in the middle of the transition zone between the plateau and its surrounding lowlands (Profile HP2 in Figure 7) and are
distributed the same way as the left side along direction X (positions displayed in the top panel). The different lines represent different curvatures (see legend) and the
dashed line marks the limit between the crust, the lithospheric mantle and the mantle. All of these simulations are done with the model IC_SL. All results are for linear
viscous flow.
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the plateau and the lowland and displayed in Figure 7d. For model SC_WL, the impact of the different curvatures
on the differential stress profile is generally minor. There is an average difference of 0.15 MPa between the flat
simulation and the one with the Earth radius and a maximum difference of less than 10MPa. Hence, for the case of
a 3D model applied to Earth, a flat (Cartesian) model provides stresses that are close to stresses resulting from a
model considering the Earth's curvature. For a curvature corresponding to the radius of the Moon, some vertical
profiles show opposite trends of stress profiles compared to models with a radius corresponding to Earth
(Figures 13d, 13g, and 13h). For example, in the vertical profile in the lowland close to the transition zone and the
plateau corner, the differential stresses in the crust increase with depth for the radius of the Moon, but decrease
with depth for all other models with larger radii (Figure 13g). However, the magnitudes of the differential stresses
are similar.

Figure 15. Comparison of analytical estimates with numerical results. The legend at the bottom of the figure indicates the
values used in the numerical calculations. (a) Maximum value of τII in the crust from numerical calculation versus crustal
viscosity, ηc. The horizontal black line indicates the analytical estimate for the deviatoric stress, τe. (b) Maximum value of
crustal horizontal velocity, Vs, versus the maximum value of ϵ̇II. The black line indicates the applied analytical estimate for the
relation between velocity, Ve, and strain rate, ϵ̇. (c) Comparison of numerical velocity, Vs, with analytical estimate, Ve. The black
line indicates the equivalence between numerical and analytical velocities. (d) Dimensionless horizontal velocity versus the
stress ratio that controls the stress‐dependent effective viscosity. The solid lines indicate the analytical velocity estimate for
different values of n (see Equation 10).
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For model IC_SL, there are only minor differences between the differential stress profiles for a model with flat
geometry and with Earth's, Mars' and Moon's curvature (Figure 14).

3.7. Scaling Estimates of Stress and Velocity

For all the numerical calculations with linear viscous flow, we compare the maximum numerical value of τII in the
crust with the analytical estimate τe since both stress magnitudes represent deviatoric stresses (Figure 15a). The
estimated value of τe is ≈34 MPa for the applied model configuration and this value predicts the numerical values
of τII accurately within a factor of ≈2. The comparison shows that τe tends to provide a lower bound for the
numerical stress magnitudes (Figure 15a). The numerical results also show that stress magnitudes depend only
slightly on the crustal viscosity. While the viscosity of both the crust and lithospheric mantle varies by two orders
of magnitude, the stress magnitudes only vary within a factor of less than ≈2 which supports the analytical es-
timate of τe that is estimated independently of the viscosity.

The numerical results show that there is an approximately linear correlation between the maximum horizontal
velocity, Vs, and the maximum strain rate invariant, ϵ̇II (Figure 15b). We have assumed such linear relation in
Equation 6 to derive an analytical estimate for the velocity. A length scale, L, that captures the observed relation
between the numerical velocities and strain rates is ≈200 km. The 200 km corresponds to twice the width of the
transition zone. For the analytical estimate of the velocity, Ve, we hence use L = 200 km (see Equation 7).

The comparison between the maximum value of the numerical velocity, Vs, and the corresponding analytical
estimate, Ve, shows that Ve can accurately predict the velocities within a factor of ≈3 (Figure 15c). Such accuracy
of Ve is remarkable because in the numerical calculations both ηc and ηl vary between 10

20 and 1022 Pa · s, and the
numerical calculations consider all end‐member combinations of ηc and ηl (Figure 4).

We made calculations with a stress‐dependent viscosity only for a crustal linear viscosity of 1022 Pa · s. The
applied value of τC is 24 MPa. The estimated value of τe/τC ≈ 1.4 (Figure 15d). For simulations with n = 6, the
estimated value of τe/τC is closest to the numerical values of max(τII)/τC while for simulations with n= 1 the value
of τe/τC underestimates the numerical values (Figure 15d). Simulations with n = 6 show the smallest variation in
max(τII)/τC (from ≈1.2 to ≈1.6) but the largest variation in max(Vs)/Ve (from ≈0.9 to ≈4.2) which is consistent
with the analytical estimate (Figure 15d). Conversely, simulations with n = 1 show the largest variation in max
(τII)/τC (from ≈1.6 to ≈2.4) but the smallest variation in max(Vs)/Ve (from ≈1.3 to ≈2.6). Simulations with n = 1
should theoretically not vary with varying max(τII)/τC and the velocity variations are due to differences between
max(τII) and τe causing the inaccuracy in the velocity prediction.

4. Discussion
4.1. Viscous Deformation of the Lithosphere

For simplicity, we consider only a linear and a power‐law viscous deformation of the lithosphere and neglect
elastic and frictional‐plastic deformation. We use viscosities between 1020 and 1022 Pa · s. Typical values of the
elastic shear modulus for lithospheric rocks are ≈3 · 1010 Pa (e.g., Dziewonski & Anderson, 1981). The char-
acteristic Maxwell viscoelastic stress relaxation time is given by the ratio of viscosity to shear modulus (e.g.,
Turcotte & Schubert, 2014). The duration of the relaxation of elastic stresses in a viscoelastic material is
approximated by the Maxwell time. For the applied viscosities between 1020 and 1022 Pa · s, and a typical shear
modulus of ≈3 · 1010 Pa, the Maxwell time is between 100 and 10,000 years. Since we are interested in the long‐
term stability of continental plateaus, say >1 Myr, it is justifiable to neglect elastic effects in our application
because elastic stresses are relaxed after ≈10,000 years for our model configuration.

The maximum differential stresses in our model are ≈110 MPa (Figure 6), and maximum differential stresses
close to the surface are<80MPa (Figure 13). Frictional‐plastic yield stresses in the continental crust are>80MPa
already below a few kilometers of depth (e.g., Kohlstedt et al., 1995; Townend & Zoback, 2000). Therefore, in our
model, only the uppermost few kilometers of the continental crust would be affected by frictional‐plastic
deformation, because most of our model crust deeper than a few kilometers exhibits differential stresses below
typical yield stresses. Furthermore, differential stresses in the lithospheric mantle in all the performed models are
also <100 MPa, and stresses are, hence, below the yield stress in the lithospheric mantle (Figure 4). The
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application of an effectively viscous deformation behavior of the lithosphere is, hence, justifiable for our model
and our modeling objectives.

4.2. Rheological Layering; Crustal and Lithospheric Mantle Viscosities

We consider in our model three rock layers that can have different viscosities, namely ηc, ηl, and ηm (Figure 2c). If
all three viscosities are identical, ηc = ηl = ηm, then the viscosity distribution would correspond to the constant
viscosity of the thin viscous sheet model. The thin viscous sheet model was applied to investigate the deformation
of the continental lithosphere in many regions worldwide, such as Tibet, New Zealand, the Apennines, the Andes
or the Aegean (D'Agostino et al., 2014; England & McKenzie, 1982; England et al., 2016; Flesch et al., 2001;
Hirschberg et al., 2019; Lamb, 2000). Many studies estimated the average viscosity of the lithosphere, mostly in
combination with the analysis of GPS measurements and strain rate estimates, between 1021 and 1023 Pa · s
(D'Agostino et al., 2014; England & Molnar, 1997; England et al., 2016; Flesch et al., 2001; Hirschberg
et al., 2019; Lamb, 2000). These previous studies support the viscosity values applied here. A model with
ηc= ηl ≪ ηmwould correspond to a rheological scenario of a gravity current over a rigid base. Such a scenario was
used, for example, to investigate crustal flow related to the India‐Asia collision (e.g., Copley &McKenzie, 2007).
A model with ηc ≫ ηl ≪ ηm would correspond to a rheological scenario of channel flow that was applied to study
lower crustal flow in and around the Tibetan plateau (e.g., Clark & Royden, 2000).

Our results show that the ratio of crustal to lithospheric mantle viscosity has a significant impact on the stress
distribution in the lithosphere. For the estimation of crustal stresses in regions with significant lateral variation of
GPE, it is therefore essential to apply models that can consider different viscosities in the crust and lithospheric
mantle. Thin viscous sheet models with constant viscosity are not well suited to estimate crustal stress magnitudes
in such regions.

Our results show that a strong lithospheric mantle alone is not sufficient to support the Tibetan plateau. The crust
must also have significant strength to prohibit an unrealistically fast horizontal dilatation of the plateau. For the
strongest lithospheric mantle in our model we apply a viscosity of 1022 Pa · s. Below the crust‐mantle boundary
(Moho), effective viscosities of the lithospheric mantle may be slightly higher than 1022 Pa · s, especially below
the lowland due to colder Moho temperatures compared to the thicker plateau (e.g., Hirth & Kohlstedt, 2003; Mei
et al., 2010). However, since we apply a constant viscosity in the lithospheric mantle, this viscosity represents a
vertically averaged viscosity. We apply the viscosity of 1022 Pa · s for the lithospheric mantle down to a depth of
150 km. In such depth, and for the correspondingly hotter temperatures, the viscosity of the lithospheric mantle is
smaller than 1022 Pa · s (e.g., England &Molnar, 2015; Hirth & Kohlstedt, 2003; Mei et al., 2010). Therefore, the
modeled lithospheric mantle with a constant viscosity of 1022 Pa · s represents a strong lithospheric mantle
compared to more realistic vertical viscosity variations based on experimentally derived flow laws.

We consider a crust that causes horizontal velocities larger than 4 cm/year as mechanically too weak to support
the Tibetan plateau. We chose 4 cm/year because this value is like the present‐day indentation velocity of India
(e.g., Liang et al., 2013). Our results show that the vertically averaged viscosity of the crust must be at least
3 · 1021 Pa · s or larger so that spreading velocities in the crust are everywhere smaller than 4 cm/year. This
average viscosity value is quite large considering the larger‐than‐normal thickness of the crust forming conti-
nental plateaus (≈70 km in the Tibetan plateau) and its associated large vertical temperature variation. For
example, the upper limit for lower crustal viscosities, resulting from geodetic estimates (e.g., Thatcher & Pol-
litz, 2008), is ≈3 · 1021 Pa · s, and many studies suggest lower crustal viscosities to range between 1018 and
3 · 1020 Pa · s (e.g., Doin et al., 2015; England et al., 2013; Shi et al., 2015). If such low‐viscosity estimates for the
continental lower crust are accurate, then our results imply that the average, effective viscosity of the upper crust
must be considerably larger than 3 · 1021 Pa · s in order to support the topographic variation between the Tibetan
plateau and surrounding lowland for geological time scales >≈1 Myr.

4.3. Shear Stresses and Corner

The crustal shear stresses vary significantly in both the horizontal and vertical directions (Figures 7 and 8). In the
corner region of the plateau, the magnitudes of the horizontal shear stresses are even larger than the absolute
magnitudes of the horizontal deviatoric normal stresses (Figures 7 and 8). Conversely, away from the corner
region, the horizontal shear stresses are essentially negligible (Figures 7 and 8).
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The vertical shear stresses vary significantly in the vertical direction at the transition zone. For a strong crust and
weak lithospheric mantle (SC_WL), the shear stresses have a maximum absolute value of ≈10 MPa (Figures 7c
and 7f). For an intermediate strong crust and strong lithospheric mantle (IC_SL), the shear stresses reach a
maximum absolute value of ≈30 MPa at the base of the crust (Figure 8f). The existence of such shear stresses has
important implications for thin viscous sheet models because in these models the vertical shear stresses are
considered to be zero (e.g., England & McKenzie, 1982; Schmalholz et al., 2014). Such thin viscous sheet ap-
proximations, that neglect vertical shear stresses, are often applied to quantify the global lithospheric stress field
(e.g., Coblentz et al., 1994; Ghosh et al., 2009; Lithgow‐Bertelloni & Guynn, 2004) or the stresses and forces
associated with large‐scale tectonic plate motion (e.g., Ghosh et al., 2006; Warners‐Ruckstuhl et al., 2012, 2013).
These models provide first‐order accurate magnitudes of large‐scale lithospheric stresses. Our results indicate that
care should be taken when interpreting such stress fields in regions with significant lateral GPE variations because
in these regions vertical shear stresses can be significant and can have a first‐order impact on stress magnitudes.
The vertical variation of the vertical shear stress is associated with a vertical variation of the horizontal deviatoric
normal stresses (Figures 7c, 7f, 8c, and 8f). The horizontal deviatoric normal stress changes its sign with depth
(Figures 7c and 8c) which is typically resulting from bending of the lithosphere around the transition zone
(Schmalholz et al., 2019). Medvedev and Podladchikov (1999) have derived an extended thin viscous sheet model
that considers vertical shear stresses. However, this extended thin sheet model can also not resolve differences in
crustal and lithospheric mantle viscosities.

2D lithospheric models configured for vertical cross‐sections provide accurate stress fields if the cross‐section has
a distance from a corner region of at least a few hundred kilometers. If the modeled cross‐section is closer, then
horizontal shear stresses are significant (Figures 7 and 8). The modeled 2D stress field can be, hence, considerably
inaccurate because it does not take into account these horizontal shear stresses.

4.4. Power‐Law Viscous Flow Law and τC

We apply only one particular value of τC to test the first‐order impact of power‐law viscous flow on the crustal
stress and extensional velocity. If a particular flow law, which is determined by laboratory rock deformation
experiments, should be applied, then the value of τC can be calculated for a given pressure, temperature or grain
size (Macherel, Podladchikov, et al., 2023). For example, for feldspar (wet anorthite), τC ≈ 24 MPa for a tem-
perature of ≈600°C and a grain size of ≈0.5 mm (Macherel, Podladchikov, et al., 2023).

Alternatively, one could consider the value of τC as an effective parameter that needs to be estimated by fitting
numerical results to observations. For example, the value of an effective stress exponent n can represent the
power‐law viscous behavior of the vertically averaged lithospheric viscosity (e.g., Houseman & England, 1986).
Houseman and England (1986) estimated that the value of the effective n should be larger than 3 to fit thin viscous
sheet results with observations and data for the Tibetan plateau. Similarly, bounds on the value of an effective τC
might be estimated by comparing model results with observations such as GPS measurements and strain rate
estimates.

4.5. Stress Versus Strength Relationship

The viscosity controls the strength of the different model units, such as the crust. The maximummagnitudes of the
differential stress in the crust do not vary significantly for a strong lithospheric mantle and different crustal
viscosities (Figure 6a). Conversely, the maximum magnitudes of the horizontal velocities and strain rates in the
crust vary between one and two orders of magnitude, respectively. The minor variation of maximum crustal
differential stresses, despite two orders of magnitude variation in crustal viscosities, shows that crustal stress
magnitudes are not a good proxy for the magnitude of crustal viscosity (e.g., Schmalholz et al., 2009). The reason
is that the magnitude of the stress is controlled by the magnitude of ΔGPE, which is independent of viscosity, and
the thickness of the crust. Smaller crustal viscosities result in faster horizontal velocities and higher strain rates.
Therefore, stress magnitudes, which are proportional to the product of viscosity and strain rate, remain more or
less constant for decreasing crustal viscosities.

4.6. Impact of Curvature

Our results show that the impact of the Earth's curvature on the stress field around continental plateaus is minor.
The absolute magnitudes of stresses are slightly smaller in models considering the Earth's curvature compared to
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flat models (Figure 13). If the curvature becomes larger, then differences between stresses for a rectangular and
spherical geometry increase. However, the differences are not large (Figure 13). The minor impact of curvature
for our model configuration is predicted by the simple geometrical shallow sheet scaling analysis of Section 2.1.

The consideration of curvature could have an impact on the calculation of frictional‐plastic yielding in the up-
permost few kilometers of the crust. The maximum differences in stress between models with and without
curvature are between 5 and 10 MPa in the uppermost crust (Figure 13). Hence, the curvature can affect the
position of the brittle‐ductile transition. For studies focusing on stress magnitudes in the uppermost crust, such
differences could be of interest.

The curvature of the lithosphere is more important for other scenarios compared to the plateau without far‐field
deformation studied here. For example, several numerical studies investigated the impact of a locally curved and
geometrically stiffened plate on the India‐Asia collision and related exhumation (e.g., Bendick & Ehlers, 2014;
Koptev et al., 2019). Amongst others, these studies show that the geometrical stiffening effect might be important
for localized regions with fast exhumation such as syntaxes. Furthermore, several theoretical studies investigated
the impact of a spherical geometry on free subduction. Chamolly and Ribe (2021) found that the Earth's sphericity
has a modest impact on the sinking speed of a slab but a much larger impact on the stress field in the slab which is
important for the along‐strike buckling of slabs. F. Chen et al. (2022) compared results of free subduction
simulations in 3D Cartesian and spherical shell domains. They found differences between the simulations that are
related, for example, to the reduction of space with depth in spherical shells which enhances along‐strike buckling
and trench curvature.

4.7. Simplifications

Wemake several simplifications in our model to study first‐order features of the 3D stress field around continental
plateaus and to keep the results transparent. We consider a simple and idealized geometry of a continental plateau
and only the instantaneous stress field. We consider a rectangular corner geometry only while in nature many
different corner geometries can exist with angles different from the 90‐degree angle used here. We do not apply a
far‐field velocity field in order to isolate the impact of topography and lateral crustal thickness variation on the
stress field. For the Tibetan plateau, the indentation of the Indian plate affects the deformation field.

Another limitation of our model is the simplified density and viscosity structure. 2D numerical models that
consider a more realistic yield strength envelope exhibit significant vertical viscosity variations due to the
temperature dependence of viscosity. These viscosity variations cause stronger vertical stress variations
compared to our model because high stresses are focused in the high‐viscosity levels of the crust and lithospheric
mantle (e.g., Schmalholz et al., 2019). Also, several studies have proposed the existence of a low‐viscosity middle
or lower crustal layer in which significant crustal flow could take place (e.g., Beaumont et al., 2004; Clark &
Royden, 2000). The existence of such a widespread and continuous low‐viscosity crustal layer remains disputed
(e.g., Nábělek et al., 2009). If such a low‐viscosity layer existed, then the magnitudes of crustal differential
stresses would likely be larger as predicted by our model because the vertically integrated stresses supporting the
plateau would be focused on a thinner upper crustal, high‐viscosity layer. Therefore, more realistic vertical
viscosity variations result in larger maximum differential stresses compared to our model with constant viscosity
in the model units.

Furthermore, the temperature dependence of viscosity will result in lateral variations of crustal and lithospheric
mantle viscosites along the Moho between plateau and lowland because of different temperatures at different
depths (e.g., Schmalholz et al., 2019). However, these lateral viscosity variations might not be dramatic in the
lithospheric mantle because the potentially active low‐temperature plasticity is significantly less sensitive to
temperature than dislocation creep (e.g., England & Molnar, 2015).

4.8. Dimensionless Stress Ratio and Analytical Estimate for Horizontal Velocity

To derive the analytical estimate Ve, we assume that the estimated deviatoric stress in the crust, τe, causes hor-
izontal extension of the plateau. In other words, by applying Equation 7 we assume that the gravitational stress is
equal to the viscous flow stress and, hence, we assume
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ρcghaL
8ηcVe

≈ 1. (14)

The above dimensionless stress ratio is similar to the Ramberg (Ramberg, 1981; Weijermars & Schmeling, 1986)
and Argand numbers (England & McKenzie, 1982). The Ramberg and Argand numbers scale the gravitational
stress to a viscous stress. In the Ramberg number, the strain rate is usually expressed by the ratio of a velocity to a
length scale (e.g., Medvedev, 2002). Conversely, in the Argand number the strain rate is typically assumed to be
the large‐scale lithospheric shortening rate during crustal thickening (England & McKenzie, 1982) or crustal and
lithospheric folding (Schmalholz et al., 2002).

To quantify the Ramberg number, one commonly assumes L = ha (Ramberg, 1981; Weijermars & Schmel-
ing, 1986). Medvedev (2002) applied the Ramberg number to a two‐sided wedge of total width λ with a basal
shear velocity Vbs. They estimated the strain rate with the ratio Vbs/λ. In our model, a cross‐section orthogonal
across the transition zone with a linear change of topography corresponds to a geometry similar to one‐half of the
double‐sided wedge considered by Medvedev (2002). In our analytical velocity estimate, we used a length scale
of L = 200 km which is equivalent to twice the width of the transition zone. This length scale is similar to the one
used in the analytical model for two‐sided wedges by Medvedev (2002) to estimate strain rates. Hence, we expect
that our velocity estimate is also applicable to plateau geometries with transition widths different from the ones of
our model if in the analytical estimate twice the width of the transition zone is used as length scale L.

4.9. Applications to the Tibetan Plateau

The Tibetan plateau has been the focus of many theoretical studies on lithospheric stress and viscosities (e.g.,
England & Houseman, 1988; England & Molnar, 1997; Flesch et al., 2001; Ghosh et al., 2006; Jeffreys, 1932;
Liu & Yang, 2003; Molnar & Lyon‐Caen, 1988; Molnar et al., 1993; Warners‐Ruckstuhl et al., 2013). Here, we
use our model result that indicates that the Ramberg number is ≈1 (Equation 14) to estimate the crustal viscosity
in particular regions of the Tibetan plateau. For example, in the eastern Tibetan plateau the Longmen Shan
orogenic belt represents the boundary between the Tibetan plateau and the Sichuan Basin (e.g., Sun et al., 2019).
In the southern segment of the Longmen Shan, the altitude decreases ≈4 km over a distance of ≈50 km and in the
northern segment the altitude decreases ≈3.5 km over a distance of ≈200 km (e.g., Sun et al., 2019). The crustal
thickness around the Longmen Shan with ≈4 km topography is ≈60 km indicating a situation close to isostatic
equilibrium (Z. Zhang et al., 2009). The GPS velocities indicate a horizontal velocity in the direction from the
high to the low topographic region of ≈1 cm/year (e.g., Gan et al., 2007; Penney & Copley, 2021; Zheng
et al., 2017). We solve Equation 14 for the crustal viscosity which yields

ηc ≈
ρcghaL
8Ve

. (15)

Applying Ve = 1 cm/year, ρc = 2,800 kg/m
3, ha = 4 km and L = 100 km provides an estimate for the average

crustal viscosity of ≈5 · 1021 Pa · s. Changing ha to 3.5 km and L to 400 km provides ηc ≈ 1.5 · 1022 Pa · s. Given
the uncertainties of the measured quantities such as velocities and topography as well as of the simple mathe-
matical model, our model predicts effective average crustal viscosities of ≈1022 Pa · s. This viscosity value
estimated with our simple Equation 15 agrees with viscosity estimates of other studies that applied more elab-
orated thin viscous sheet models (e.g., England & Molnar, 1997; Flesch et al., 2001).

The analysis of GPS measurements across the Tibetan plateau indicates that the deformation of a continuous
medium, such as modeled in our study, best describes the present‐day tectonics of the Tibetan Plateau; at least
when averaged over distances of >≈100 km (e.g., Ge et al., 2015; P.‐Z. Zhang et al., 2004). Ge et al. (2015)
analyzed GPS measurements and concluded that the Tibetan plateau is undergoing similar dilatation in its
northern, southern and southwestern parts. Dilatation occurs by vertical thinning, with strain rates of ≈8 · 10− 9 1/
year, approximately N‐S shortening, with strain rates of ≈12 · 10− 9 1/year and approximately E‐W extension,
with strain rates of ≈20 · 10− 9 1/year. These average extensional strain rates are representative for the Tibetan
plateau and are only slightly smaller than the smallest of the maximum strain rates in our models, having values of
≈80 · 10− 9 1/year (Figure 15b). The smallest maximum strain rates in our models correspond to the smallest
extensional velocities (Figure 15b) and, hence, to the largest crustal viscosity of 1022 Pa · s (Figure 5). The first‐
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order comparison between measured and modeled extensional strain rates also suggests that 1022 Pa · s is a
reasonable average viscosity for the Tibetan crust.

The India‐Asia collision and the formation of the Tibetan plateau have generated a variety of large‐scale strike‐
slip faults, particularly around the two syntaxes regions (e.g., Harrison et al., 1992; Molnar & Tapponnier, 1975;
Royden et al., 1997; Tapponnier et al., 2001). The syntaxes regions are characterized by significant horizontal
changes in the direction of the transition zone between high‐ and low‐altitude regions. In our model, the corner
represents such regions in which the transition zone between high‐ and low‐altitude regions significantly changes
its horizontal direction. The modeled, strongly increased, horizontal shear stresses around the plateau's corner
region (Figures 7 and 8) suggest that ongoing strike‐slip faulting around the Tibetan syntaxes regions might be
supported, in addition to indentation and convergence, by horizontal shear stresses resulting from the significant
lateral changes in topography and crustal thickness.

A stronger continental crust exhibits larger and more homogeneously distributed differential stresses compared to
a weaker crust above a strong lithospheric mantle (Figures 9a and 9c). For a weak, low‐viscosity crust, large
differential stresses occur only along the transition zone and differential stresses significantly decrease toward the
plateau center (Figure 9c). Earthquakes are relatively equally distributed across the Tibetan plateau (e.g., Bai
et al., 2017; Hetényi et al., 2023; Li & Hou, 2019). There is no systematic trend that shows, for example, a
decreasing density of earthquakes toward the center of the Tibetan plateau. Consequently, the crust of the Tibetan
plateau should be at least strong enough to prohibit a considerable decrease of differential stress toward the
plateau center.

Some of the most active orogenic processes on Earth occur within the syntaxes of the Himalayan chain, at the
southern termination of the Tibetan plateau (e.g., Zeitler et al., 2001). These syntaxial regions are characterized by
strong lateral variations in topography and crustal thickness. The applied power‐law viscous flow law can locally
decrease crustal viscosities in regions with stresses that are larger than those in the surroundings, due to its stress‐
weakening effect. Our results show that such relative stress weakening can occur in the transition zone around the
corner region (Figure 10f). The decreased viscosity in the transition at the corner of the plateau could locally
weaken the crust, focus the deformation and contribute to locally increased exhumation. Several mechanisms
have been proposed to explain the localized exhumation and deformation in the syntaxes, such as crustal‐scale
buckle folding (Burg et al., 1997), diverted crustal flow resulting from localized river incision and erosion
(Zeitler et al., 2001) or crustal deformation over a geometrically stiffened subducting plate (Bendick &
Ehlers, 2014). Whatever the mechanism, a local stress‐weakening of the crust in the syntaxes region due to
stresses resulting from strong lateral topography and crustal thickness variations could support the localization of
deformation and ongoing rapid exhumation.

5. Conclusions
We investigated with 3D numerical calculations the interplay of various factors governing the crustal stresses and
horizontal velocities caused by continental plateaus. In our model, the plateau deforms by horizontal dilatation
and vertical thinning due to lateral variations in GPE only because we do not consider any tectonic far‐field
deformation.

Varying the viscosity of both the continental crust and lithospheric mantle has unveiled several key insights
(Sections 3.3 and 3.5). First, maximum horizontal velocities in the crust always increase with decreasing viscosity
of the crust and lithospheric mantle. Second, decreasing crustal and lithospheric mantle viscosities does not
automatically reduce the maximum stress magnitudes in the crust; instead, the decrease can lead to faster crustal
flow, higher strain rates, and subsequently, higher stresses. Maximum crustal stress magnitudes vary within a
factor of 2 only while crustal and lithospheric mantle viscosities vary by two orders of magnitude. Hence, in
deforming regions crustal stress magnitudes are not a reliable proxy for the effective crustal viscosity, and, hence,
crustal strength. Lastly, the incorporation of a stress‐dependent power‐law viscous flow law generally results in
decreased stress magnitudes.

We performed a scaling analysis and derived simple analytical estimates for the crustal horizontal deviatoric
stress and horizontal velocities caused by continental plateaus. The analytical estimates agree to first order with
the 3D numerical results (Section 3.7). We applied the scaling results to estimate average crustal viscosities for the
eastern Tibetan plateau and obtained a crustal viscosity of ≈1022 Pa · s which is in agreement with estimates of
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other studies (Section 4.9). This crustal viscosity magnitude also agrees with the results of our systematic nu-
merical calculations (Section 3.3). We defined a critical velocity threshold for assessing the continental crust's
effective viscosity. For instance, modeled Tibetan plateau horizontal velocities exceeding 4 cm/year suggest an
unrealistically weak continental crust. In all scenarios explored, an average crustal viscosity of at least
3 · 1021 Pa · s is essential to ensure velocities below 4 cm/year. The maximum differential stresses in the crust are
between 55 and 115 MPa for all scenarios. This underscores the importance of a mechanically strong crust to
sustain large topographic features and lateral crustal thickness variations over extended geological time scales.

Our study has emphasized the critical role played by plateau corner regions in shaping the crustal stress field
(Section 3.4). Notably, horizontal deviatoric normal stresses consistently decrease toward the rectangular corner
considered here, while horizontal shear stresses significantly intensify. These corner regions exhibit elevated
horizontal shear stresses, reaching up to 30 MPa in our models, underscoring their importance in understanding
crustal stress patterns.

Finally, we have demonstrated with a simple shallow sheet scaling in combination with 3D numerical calculations
considering spherical geometries that for our model the Earth's curvature exerts a minor influence on stress
magnitudes and distribution within the continental crust (Section 3.6). Consequently, for spatial scales smaller
than a few thousand kilometers, it is justifiable to omit the Earth's curvature in numerical models of stress dis-
tribution around continental plateaus.

Appendix A: Method
A1. Mathematical Model

In this study, we use a numerical algorithm to solve the Stokes equations in spherical coordinates. In this co-
ordinates system, r is the radial direction, θ is the polar angle and φ is the azimuthal angle (see Figure 2b). The
total stress tensor σij is decomposed into a pressure P (or mean stress) and a deviatoric stress τij as σij= − δijP+ τij.
The indexes i and j vary between 1 and 3 and indicate the three spatial directions (r, θ, φ). Components of the
deviatoric stress tensor for incompressible flow are defined as:

τrr = 2ηEϵ̇rr = 2ηE(
∂Vr
∂r

)

τθθ = 2ηEϵ̇θθ = 2ηE(
1
r
∂Vθ
∂θ

+
Vr
r
)

τφφ = 2ηEϵ̇φφ = 2ηE(
1

r sin(θ)
∂Vφ
∂φ

+
Vr
r
+
Vθ
r
cot(θ))

τrθ = 2ηEϵ̇rθ = 2ηE(
1
2
(
∂Vθ
∂r

+
1
r
∂Vr
∂θ

−
Vθ
r
))

τrφ = 2ηEϵ̇rφ = 2ηE(
1
2
(
∂Vφ
∂r

+
1

r sin(θ)
∂Vr
∂φ

−
Vφ
r
))

τθφ = 2ηEϵ̇θφ = 2ηE(
1
2
(
1
r
∂Vφ
∂θ

+
1

r sin(θ)
∂Vθ
∂φ

−
Vφ
r
cot(θ)))

(A1)

where ηE is the effective viscosity, ϵ̇ij are the strain rate tensor components and Vi are the components of the
velocity vector. The square root of the second invariant of the deviatoric stress tensor, τII, which is used in
Equation 11 for the stress‐dependent viscosity, is

τII =
̅̅̅̅̅̅̅̅̅̅̅

0.5 τ2ij
√

=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

0.5(τ2rr + τ2θθ + τ2φφ) + τ2rθ + τ2rφ + τ2θφ
√

. (A2)

The equations for the conservation of mass and the conservation of the linear momentum in an incompressible
fluid under gravity are:
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0 = − (
∂Vr
∂r

+
1
r
∂Vθ
∂θ

+
1

r sin(θ)
∂Vφ
∂φ

+ 2
Vr
r
+
Vθ
r
cot(θ))

0 =
∂σrr
∂r

+
1
r
∂τrθ
∂θ

+
1

r sin(θ)
∂τrφ
∂φ

+ 2
σrr
r
−
σθθ
r
−
σφφ
r
+
τrθ
r
cot(θ) − ρg

0 =
∂τrθ
∂r

+
1
r
∂σθθ
∂θ

+
1

r sin(θ)
∂τθφ
∂φ

+ 3
τrθ
r
+
σθθ
r
cot(θ) −

σφφ
r
cot(θ)

0 =
∂τrφ
∂r

+
1
r
∂τθφ
∂θ

+
1

r sin(θ)
∂σφφ
∂φ

+ 3
τrφ
r
+ 2

τθφ
r
cot(θ)

(A3)

where ρ is the density and g is the gravitational acceleration.

A2. Numerical Method

The numerical algorithm to solve the governing system of equations is programmed for spherical coordinates. To
solve the governing equations, we discretize them on a staggered grid with constant spacing using the finite
difference method (e.g., Gerya, 2019; Räss et al., 2022; Virieux, 1986). The numerical method we use to solve the
discretized equations is the pseudo‐transient method, which is an iterative solution strategy for stationary
problems that allows solving the equations in a matrix‐free way (e.g., Räss et al., 2022; Wang et al., 2022). The
pseudo‐transient method consists of adding a pseudo‐time derivative to the governing equations. The initial
values for the pressure and velocity fields do not solve the discretized equations. Hence, the idea of the pseudo‐
transient method is to iterate over the pseudo‐time until the pseudo‐time derivatives become smaller than a
specified tolerance value for all numerical grid points, and a numerical solution is reached.

The pseudo‐transient method consists in adding a pseudo‐time derivative to Equations A1 and A3:

1
2G̃

∂τrr
∂τPT

+
τrr
2ηE

=
∂Vr
∂r

1
2G̃

∂τθθ
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+
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2ηE

=
1
r
∂Vθ
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+
Vr
r

1
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=
1

r sin(θ)
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∂φ

+
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r
+
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r
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1
2
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r
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(A4)

where K̃, ρ̃ and G̃ are numerical parameters and τPT is a pseudo‐time. K̃ and G̃ can be considered as pseudo‐bulk
and pseudo‐shear modulus, respectively, and ρ̃ as a pseudo‐density. With these parameters, Equation A4 can be
considered as acoustic and inertial approximations of the mass and momentum balance equations respectively.
After a number of iterations, the pseudo‐time derivatives become smaller than a specified tolerance, here 5 · 10− 7,
and a numerical solution is reached.
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Data Availability Statement
Current and future versions of the SphericalStokes.jl software used in this study are publicly available on GitHub
at https://github.com/PTsolvers/SphericalStokes. The exact version used in this study is archived on Zenodo and
can be accessed at https://zenodo.org/doi/10.5281/zenodo.10093648 (Macherel, Räss, & Schmalholz, 2023).
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