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Abstract 14 

This study presents an approach for semi-automated classification of tree species in different types of forests 15 

using first and second generation ADS40 and RC30 images from two study areas located in the Swiss Alps. In a 16 

first step, high-resolution canopy height models (CHMs) were generated from the ADS40 stereo-images. In a 17 

second step,  multi-resolution image segmentation was applied. Based on image segments seven different tree 18 

species for study area 1 and four for study area 2 were classified by multinomial regression models using the 19 

geometric and spectral variables derived from the ADS40 and RC30 images. To deal with the large number of 20 

explanatory variables and to find redundant variables, model diagnostics and step-wise variable selection were 21 

evaluated. Classifications were ten-fold cross-validated for 517 trees that had been visited in field surveys and 22 

detected in the ADS40 images. The overall accuracies vary between 0.76 and 0.83 and Cohen's kappa values 23 

between 0.70 and 0.73. Lower accuracies (kappa < 0.5) were obtained for small samples of species such as non-24 

dominant tree species or less vital trees with similar spectral properties. The usage of NIR bands as explanatory 25 

variables from RC30 or from the second generation of ADS40 was found to substantially improve the 26 
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 2 

classification results of the dominant tree species. The present study shows the potential and limits of classifying 27 

the most frequent tree species in different types of forests, and discusses possible applications in the Swiss 28 

national forest inventory. 29 

 30 

Keywords: airborne digital sensor, canopy height model, forest inventory, multinomial regression, multi-sensor 31 

integration, tree species 32 

 33 

Abbreviations: ADS (Airborne Digital Sensor), BRDF (bidirectional reflectance distribution function), CHM 34 

(canopy height model), CIR (color-infrared), DSM (digital surface model), DTM (digital terrain model), GLM 35 

(generalized linear model), IHS (intensity, hue, saturation),  NFI (national forest inventory), NIR (near-infrared), 36 

RC30 (aerial row camera), VHR (very high resolution) 37 

 38 

1. Introduction 39 

 40 

Precise information on species composition is essential for forest studies, inventories, management and other 41 

forest applications. Tree species maps of forest ecosystems are a required input for biodiversity and biomass 42 

estimations and therefore indispensible for many environmental, monitoring or protection tasks. 43 

Historically, aerial photography represents the most popular input to remote sensing in forestry (Spurr, 1960; 44 

Gillis and Leckie, 1996). Classification of tree species was based on the interpretation and mapping of aerial 45 

photographs (i.e. acquired from RC30) and methods have been developed to identify the individual tree crowns 46 

(Wulder, 1998; Bolduc et al., 1999; Erikson, 2004). In recent years, high spatial resolution images have been 47 

used to obtain information on individual tree species (Brandtberg, 2002; Key et al., 2001; St-Onge et al., 2004). 48 

With the increasing availability of digital airborne imagery, a new round of research on classifying tree species 49 

on individual tree level is being initiated. Digital airborne data have facilitated new opportunities for tree species 50 

classification since the digital devices are supposed to be spectrally and radiometrically superior to the analogue 51 

cameras (Petrie and Walker, 2007). The data are recorded by frame-based sensors, e.g. Z/I DMC (Olofsson et 52 
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al., 2006; Holmgren et al., 2008), Ultracam (Hirschmugl et al., 2007) or line-scanning sensors, e.g. ADS40 / 53 

ADS80 (Waser et al., 2010), which provide stereo-overlap of up to 90% or entire image strips with higher 54 

radiometric resolution.  55 

Great progress is occurring in three-dimensional remote sensing including digital stereo-photogrammetry, radar 56 

interferometry and LiDAR. By subtracting, for example, a digital terrain model (DTM) from the corresponding 57 

digital surface model (DSM), canopy height models (CHMs) can be calculated that provide a basis for 58 

estimating forest attributes like height, area or tree species composition. In recent years, especially high 59 

resolution airborne laser scanning (ALS) has become an operational tool for producing forest inventory data in 60 

many countries and also species classification has become feasible (Brandtberg, 2007; Holmgren and Persson, 61 

2004; Ørka et al., 2009).  62 

Several studies reveal that combining optical data with 3-D information obtained from CHMs for the extraction 63 

of trees (Straub, 2003; St-Onge et al., 2004; Hirschmugl et al., 2007; Waser et al., 2008a & 2008b) or tree 64 

species classification lead to better accuracies than using only a single data input (Heinzel et al., 2008; 65 

Holmgren et al., 2008; Lamonaca et al., 2008; Chubey et al., 2009).  66 

According to Jensen (2005) the most appropriate classification strategy depends on different parameters such as 67 

the biophysical characteristics of the research area, the homogeneity of the remote sensing data and the “a 68 

priori” knowledge. Several studies stress the advantages of combining multi-resolution segmentation (Baatz and 69 

Schäpe, 2000) with object-based classification (De Kok and Wezyk, 2006; Wang et al., 2006; Lamonaca et al., 70 

2008) to fully explore the information content of VHR images.  71 

According to Guisan and Zimmermann (2000) or Scott et al. (2002), modern regression approaches such as 72 

generalized linear models (GLMs) have proven particularly useful for modeling the spatial distribution of plant 73 

species and communities (Guisan et al., 2004). The growing need for sensitive tools to predict spatial and 74 

temporal patterns of plant species or communities (Guisan and Thuiller, 2005) is reflected by an increasing 75 

usage of predictive spatial modeling over the past 20 years. Küchler et al. (2004) show that spatially explicit 76 

predictive modeling of vegetation using remotely sensed environmental attributes can be used to construct 77 

current vegetation cover. Thus multinomial regression models seem especially promising for modeling tree 78 
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species when analyzing the relationship between categorical dependent variables (e.g. tree species) and 79 

explanatory variables derived from remotely sensed data (Waser et al., 2008b & 2008c). 80 

The objective of this study was to develop a robust semi-automated classification method for the most frequent 81 

tree species (at least 5% coverage according to the Swiss NFI) in two study areas with different types of forests, 82 

and to show the potential of first and second generation ADS40 imagery. A drawback for study area 1 is that the 83 

NIR channel of the 1st generation ADS40 data from 2005 was not available. CIR RC30 images were used 84 

instead. The study was carried out within the framework of the Swiss National Forest Inventory (NFI) (Brassel 85 

and Lischke, 2001) and the Swiss Mire Protection Program (Ecker et al., 2008).  86 

In the current study, a multinomial model has been developed for two study areas of few square kilometers but 87 

that are representative for heterogeneous forest regions concerning both topography and tree species 88 

composition. Since for the Swiss NFI and for monitoring biotopes of national importance, tree species 89 

composition of greater areas, preferably on the national scale are required, this preliminary study is a first 90 

important contribution. The continuity of this approach will be guaranteed since the required input data (field 91 

samples, images) is being provided by other national campaigns or monitoring programs. The image data from a 92 

second generation ADS40 and an ADS80 sensor (follow-up product of ADS40 since 2009) will be available 93 

every three years nationwide. 94 

 95 

2. Material 96 

 97 

2.1 Study areas 98 

Study area 1 is located in the pre-alpine zone (approx. 47°18’ N and 9°14’ E) and is approx. 2.4 km2 in area. The 99 

terrain varies (steep slopes and flat areas) with mixed land cover such as forest and wetlands. The altitude ranges 100 

from 900 m to 1350 m a.s.l. The forest area covers approx. 1.5 km2, and is mostly characterized by mixed forest 101 

with a dominance of deciduous trees along the creeks. The dominating deciduous tree species are Fagus 102 

sylvatica and Fraxinus excelsior and less frequently Acer sp., Alnus sp., and Betula sp.  The main coniferous 103 

trees are Abies alba and Picea abies. 104 
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 105 

 106 

 108 

Figure 1. Left: Shaded relief and Landsat TM images of Switzerland (© 2006 Swisstopo JD052552). Top right: study area 109 

1 (Pre-Alps); bottom right: study area 2 (Central Alps). 110 

 111 

 112 

Study area 2 is located in the Central Alps (approx. 46°46' and 10°16'), and is approx. 4.2 km2 in area. It 113 

includes steep terrain which is mostly north oriented (Fig. 1). The altitude ranges from 1250 m to 2050 m a.s.l. It 114 

is characterized by large forests, with some pastures and wetlands in the centre. The forest covers 2.8 km2 and is 115 

mostly mixed forest in the lower parts and coniferous mountain forest with very old stands in the upper parts. 116 

The dominating tree species are Larix decidua, Picea abies, Pinus sylvestris and Betula sp.  117 

 118 

2.2 Ground truth 119 

The ground truth data to validate the tree species classifications was collected in the natural environment to be 120 

representative for both study areas. A variety of tree species communities are present in each study area. Two 121 

ground surveys were carried out in summer 2008 in each study area, focusing on the most frequent tree species 122 

(at least 5% coverage in Switzerland) which were also visible in the aerial images. For a total of 285 sampled 123 
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trees in study area 1 and 232 in study area 2 we recorded the species (table 1) and determined the tree position 124 

with a sub-decimeter GPS with differential correction (Leica TPS1200). Additionally, the crowns of all visited 125 

trees were delineated in the field on the corresponding aerial images. This information together with the 126 

measured XY positions was used as reference to digitize the corresponding tree crowns on the ADS40 RGB 127 

images. Typical examples of each tree species as seen in the ADS40 RGB images are shown in Fig. 2. This 128 

information was used to calibrate and validate the multinomial regression models. Species information from 129 

Swiss NFI  terrestrial surveys on sample plot level was not used in this study because the exact position of the 130 

sample centers was unknown. Since last summer, the center point of each visited sample plot is measured with a 131 

GPS (Trimble Geoexplorer XH). The exact positions relative to the plot center of all trees are known: they have 132 

been measured using measuring bands and compass. 133 

 134 

Table 1. Tree species sampled in the two study areas. Species proportion of tree species is based on estimates by an expert during the 135 

field surveys, (similar tree species of study area 2 in brackets). 136 

Scientific tree 

species name 

Common tree 

species name 

Number of  

samples  

Species 

poportion   

Study area 

Acer sp.  

Alnus sp. 

Betula  sp. 

Fagus sylvatica 

Fraxinus excelsior 

Abies alba 

Larix decidua 

Picea abies 

Pinus sylvestris 

maple 

alder 

birch 

beech 

ash 

white fir 

larch 

Norway spruce 

Scots pine 

20 

21 

21 (39) 

52 

56 

51 

87 

64 (44) 

62 

< 10% 

10% 

<10%  

20% 

15% 

15% 

50% 

25% (10%) 

30% 

1 

1 

1, 2 

1 

1 

1 

2 

1, 2 

2 

 137 

 138 
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1 Acer sp., 2 Alnus sp., 3 Betula sp., 4 Fagus sylvatica, 5 Fraxinus excelsior, 6 Abies alba, 7 Larix decidua, 8 

Picea abies, 9 Pinus sylvestris 

 139 

Figure 2. Examples of the 9 collected tree species as they appear in the ADS40 RGB imagery. 140 

 141 

2.3 Remotely sensed data 142 

This study uses three different sets of input data types: 1. ADS40 (first and second generation) images,  2. RC30 143 

CIR aerial images and 3. LiDAR DTMs. All datasets were resampled to 0.25 m for study area 1 and 0.5 m for 144 

study area 2. Table 2 lists the image data and their characteristics as used in this study. The RC30 images are 145 

only available for selected areas on request, unlike the ADS40 images, which are available for the whole of 146 

Switzerland. 147 

 148 
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2.3.1 Airborne Digital Sensor data (ADS40) 149 

First generation ADS40-SH40 and second generation ADS40-SH52 images  Level 1 (Leica Geosystems AG, 150 

Switzerland) were used in this study (for further details on the sensor see e.g. Reulke et al. 2006). For technical 151 

details and descriptions of earlier applications, see Kellenberger et al. (2007) and Kellenberger and Nagy (2008). 152 

The main drawback of the first-generation ADS40-SH40 is that the NIR line CCD is placed 18° forward from 153 

the nadir RGB CCDs which makes it difficult to combine all four lines. The second generation ADS40-SH52 154 

provides the NIR band in the same nadir position as the RGB bands. ADS40-SH52 data had been collected only 155 

for study area 2 when this study was carried out. For both study areas, digital surface models (DSMs) were 156 

generated automatically from the above images with a spatial resolution of 0.5 m using modified strategies of 157 

NGATE of SOCET SET 5.4.1 (BAE Systems). Prior to the DSM generation, a Wallis filter is applied to 158 

enhance contrast, especially in shadow regions, and to equalize radiometrically the images for matching. 159 

NGATE performs image correlation and edge matching on each image pixel. Based on a hybrid approach, it 160 

uses both area-matching and edge-matching. Baltsavias et al. (2008) encountered some problems applying these 161 

matching strategies especially for forests and open vegetation lands since they were primary developed for 162 

urban areas. They suggest using a new, high-quality multi-image matching method (implemented in the program 163 

package SAT-PP), but this matching method is still under development for ADS40 image data (Zhang and 164 

Gruen, 2004). 165 

 166 

2.3.2 Scanned CIR aerial images 167 

For study area 1, five consecutive colour infrared (CIR) aerial film images were acquired with an Leica RC30 168 

camera. They where digitized with a Vexcel UltraScan and 15 µm pixel size. Image orientation was established 169 

with 20 ground control points, previously measured in a differential GPS survey, using bundle adjustment 170 

(Socet Set 5.4.1 of BAE Systems).  171 

 172 

Table 2. Summary of characteristics of the image data used 173 

 174 
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Sensor CIR RC30 ADS40-SH40 ADS40-SH52 

Study area 1 1 2 

Acquisition date 2005/08/08 2005/08/12 2008/09/02 

Mapping Scale 1:5,700 ~1:15,000 ~1:20,000 

Focal length 300 mm 62.8 mm 62.8 mm 

Spectral resolution 

(nm) 

Green: 500-600  

Red: 600-700  

NIR: 750-1000  

Red: 610-660  

Green: 535-585  

Blue: 430-490 

 

Red: 608-662  

Green: 533-587 

Blue: 428-492  

NIR: 833-887  

Ground pixel size ~8.5 cm ~25 cm ~50 cm 

Orthoimage 25 cm  25 cm 50 cm 

Radiometric 

resolution 

8 bit 11 bit 11 bit 

 -- 12,000 pixels / 

array 

12,000 pixels / 

array 

 175 

 176 

2.3.3 LiDAR data 177 

National LiDAR digital terrain data (DTM) produced by the Swiss Federal Office of Topography 178 

(SWISSTOPO) for study area 1 (acquisistion date: March 2002, reflown October 2002, leaves-off) and study 179 

area 2 (March 2003, reflown October 2003, partly leaves-off) were used. The data were acquired by Swissphoto 180 

AG / TerraPoint using a TerraPoint ALTMS 2536 system with an average flying height above ground of 1200 181 

m. The DTM has an average point density of 0.8 points / m2 and height accuracy (1 sigma) of 0.5 m (Artuso et 182 

al. 2003) and was interpolated to a regular grid with 0.25 m (study area 1) and 0.5 m (study area 2) grid spacing. 183 

 184 

3. Methods 185 

 186 

The models have been developed and tested in the two forest ecosystems in Switzerland as shown in Fig. 1. The 187 

main steps in processing the data and the methodological workflow are given in Fig. 3. 188 

 189 
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Figure 3. Overview of the methodological workflow, with the main processing steps. 191 

 192 

3.1 Variables derived from remotely sensed information 193 

To extract tree area and classify tree species, several variables (geometric and spectral signatures) were derived 194 

from the remote sensing data using standard digital image processing methods as described in Gonzales and 195 

Woods (2002). Details about extraction of geometric and spectral explanatory variables derived from airborne 196 

remote sensing data are described in Waser et al. (2007 & 2008a). Geometric variables are often used in 197 

hydrological or geomorphologic analyses of land surface and topography. They can also be used to describe the 198 

physical characteristics of natural and artificial objects of a digital surface model. They can support image 199 

segmentation or improve the distinction between, e.g. trees and roofs, in a forest classification process. The 200 

input variables used in this study consist of four commonly used geometric parameters derived from the CHMs 201 

(slope, curvature, and two local neighborhood functions). For further details, see table 3, Burrough (1986) and 202 

Moore et al. (1991). As spectral variables (see table 3) we produced the mean and standard deviations of: 3 x 3 203 

original bands of ADS40-SH40, ADS40-SH52 and RC30 CIR; the 3 ratios of each band, i.e. red band divided 204 
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by the sum of the corresponding three bands; and the color transformation from RGB and CIR to IHS (for RC30 205 

only CIR to IHS) into the 3 channels intensity (I), hue (H), and saturation (S). The NIR information from the 206 

RC30 CIR images was used as the explanatory variable to test for possible benefits of the NIR information 207 

provided by second generation ADS40 imagery.  208 

 209 

Table 3. Overview of the explanatory variables produced to classify the tree species in the two study areas 210 

 211 

Source  Variable Description Study area 

Canopy 

height model 

G
eo

m
et

ri
c 

va
ri

ab
le

s 

slope  Rate of maximum change in z value from each 

cell 

1, 2 

 curvature Curvature of a surface at each cell centre (3x3 

window) 

1, 2 

 plan Rate of change in slope for each cell. Curvature 

of the surface in the direction of slope (3x3 

window) 

1, 2 

 prof Assessment of topographic position (four classes: 

ridge, slope, toe slope and bottom). The resulting 

grid displays the most extreme deviations from a 

homogeneous surface. 

1, 2 

ADS40-

SH40 / SH52 

images 

Sp
ec

tr
al

 v
ar

ia
bl

es
 

original bands RGB 1. band: red, 2. band: green, 3. band: blue 1, 2 

 ratios of RGB bands Red / (red + green + blue); green /  (red + green + 

blue); blue / (red + green + blue) 

1, 2 

 IHS of RGB transforms red, green, and blue values into 

intensity, hue, and saturation 

1, 2 

ADS40-

SH52 

original bands CIR 1. band: NIR, 2. band: red, 3. band: green 2 

 ratios of CIR bands NIR / (NIR + red + green); red /  (NIR + red + 

green); green / (NIR + red + green) 

2 

 IHS of CIR transforms red, green, and NIR values into 

intensity, hue, and saturation 

2 

RC30 images original bands CIR “ 1 

 ratios of CIR bands “ 1 

 IHS of CIR “ 1 

∑  22                   1, 2 

 212 
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 213 

3.2 Image segmentation  214 

Homogenous image segments of individual tree crowns or tree clusters are needed to classify tree species (see 215 

below). Both the ADS40-SH40 and /ADS40-SH52 orthoimages were therefore subdivided into patches by a 216 

multi-resolution segmentation using the Definiens 7.0 software (Baatz & Schäpe, 2000). The RGB bands were 217 

used as input data with the DSMs providing additional geometric information (height and slope). Segmentation 218 

was iteratively optimized using several levels of detail and adapted to shape and compactness parameters. The 219 

final segmentation provides groups of trees and individual trees with similar shapes and spectral properties. 220 

Finally, the means and standard deviations of the geometric and spectral variables were calculated for each 221 

segment. 222 

 223 

3.3. Tree covers 224 

The extraction of the area covered by trees is required for the area-wide mapping of the tree species. Tree cover 225 

and non-tree area masks were generated in four steps. First, for each study area a digital canopy height model 226 

(CHM) was produced subtracting the LiDAR DTM from the DSMs. In a second step, pixels with CHM values ≥ 227 

3 m were used to extract potential tree areas according to the definition in the Swiss NFI (Brassel and Lischke, 228 

2001). In a third step, non-tree objects, e.g. buildings, rocks, and artifacts were removed using spectral 229 

information from the ADS40-SH52 CIR and RC30 CIR images (low NDVI pixel values) as well as information 230 

(curvature) about the image segments (e.g. segments on buildings have lower curvature values and ranges than 231 

trees or large shrubs). These four steps resulted in two canopy covers providing sunlit tree area for each study 232 

area.  233 

 234 

3.4 Classification of tree species  235 

3.4.1 Modeling procedures 236 

Image segments representing single trees were to be assigned to classes (species) by predictive modeling. The 237 

classes were given by a field sample from the 7 respectively 4 dominant tree species of the study areas as 238 
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described in section 2.2. As each response variable has more than two possible states, a multinomial model had 239 

to be applied. Multinomial logistic regression as described in detail in Hosmer and Lemeshow (2000) was used 240 

to assign the segments to the species with the highest modeled probability. 241 

In multinomial logistic regression, one category of the dependent variable is chosen as the comparison category. 242 

Separate relative risk ratios are determined for each category of the response variable with the exception of the 243 

comparison category, which is omitted from the analysis. The formula of the multinomial logistic regression 244 

function is given in equations 1 and 2: 245 

 

and 

(1) 

 

(2) 

 246 

where for the ith individual Yi  is the response variable (one of the tree species), Xi  is a vector of the explanatory 247 

variables (geometric data, image bands and derivatives given in section 3.1), βj is the unknown corresponding 248 

parameter (estimated by maximum likelihood). J is the number of categories (4 or 7 tree species) and r is the 249 

tree species tested. 250 

In R version 2.11.0, several algorithms for multinomial models are available. The R package nnet provides an 251 

implementation on the base of a neuronal network which is very robust with respect to redundant explanatory 252 

variables, but which does not output detailed model diagnostics (only AIC and deviance of the whole model). 253 

The algorithm mlogit provides extensive model diagnostics, but fails if variables are collinear or differently 254 

redundant. 255 

 256 

3.4.2 Variable selection and validation 257 



 14 

A good fit to the given (training) data is not a sufficient condition for good predictive models. Particularly when 258 

many explanatory variables are used with relatively few observations, the result is an excellent fit to the training 259 

data, but poor predictions for additional data. To obtain good predictions, a small set of powerful variables has 260 

to be selected. Step-wise selection procedures have been developed and optimized for linear models. These 261 

procedures can also be applied to other model types, but the results have to be considered with reservation 262 

(Guisan et al. 2002). Therefore some additional effort was taken to assess the explanatory power of the 263 

variables. 264 

The mean and standard deviations of the explanatory variables were grouped as follows: First, the variables IHS 265 

of the RGB and CIR bands because they are supposed to concentrate a maximum of information in few 266 

channels, second the variables obtained from the original color bands and the ratios of the original bands to 267 

provide information lost by the IHS transformation, third the geometric variables to provide information which 268 

is not given by the spectral variables. The explanatory variables were tested in three ways: 1) The significant 269 

terms within each variable group for each tree species as provided by the mlogit output were counted. 270 

Redundant variables (one of the three ratio channels and some of the geometric variables, see tables 5 and 6) had 271 

to be omitted to prevent failure of mlogit. 2) Step-wise variable selection was applied (AIC, both directions, 272 

Akaike, 1973) on separate logistic models for each tree species. Then, the terms remaining in the models were 273 

counted for each variable group and tree species. 3) Finally, the predictive power of the models was verified by 274 

a ten-fold cross-validation. The statistical measures used to validate the results were: producer’s- and user’s 275 

accuracy, correct classification rate (CCR), kappa coefficient (K). In summary, the assignment of tasks and R-276 

functions was the following: 277 

• Testing the explanatory power of the variables: mlogit 278 

• Step-wise variable selection: separate logistic models 279 

• Cross-validation: nnet 280 

 281 

3.4.3 Assignments of  field samples to aerial images 282 
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In order to validate the predictions of tree species, the digitized reference tree data (see section 2.2) had to be 283 

assigned to the corresponding image segments. However, the delineations of the field samples were not always 284 

(or even rarely) congruent with the automatically generated image segments. Each of the digitized reference 285 

trees (285 in study area 1 and 232 in study area 2) was assigned to an image segment using the following rule: If 286 

one segment contained more than one digitized field sample, the segment was assigned to the field sample 287 

covering the greater part of the segment. If less than 10% of the image segment was covered by the sample 288 

polygon, the segment was not assigned at all. 289 

 290 

3.4.4 Predictive mapping 291 

Besides the validation of the models, quality control of the prediction for not sampled trees was applied. The 292 

predicted tree species of both study areas were visually inspected within the corresponding tree covers. For both 293 

study areas species maps were produced showing the most probable tree species if the modeled probability 294 

exceeded 90%.  295 

 296 

4. Results 297 

 298 

4.1 Explanatory power of the variables 299 

Tables 5 and 6 illustrate the explanatory power of the variables as suggested by the significant terms output by 300 

the mlogit.  301 

 302 

Table 5. Counts of significant (P  < 0.05) contributions of variable groups for study area 1. The group of geometric 303 

variables includes curvature and slope. 304 

Variable groups Acer sp. Alnus sp. Betula sp. Fagus 

sylvatica. 

Fraxinus 

excelsior  

Abies alba Picea 

abies 

Total 

RC30-CIR - 2 1 4 6 2 1 16 

RC30-CIR-Ratio - 2 1 2 5 2 3 15 
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RC30-CIR-IHS - 5 - - 4 - 3 12 

ADS40-RGB - 4 1 1 4 7 2 19 

ADS40-RGB-Ratio - 3 1 - 1 2 2 9 

ADS40-RGB-IHS - 5 1 1 1 1 2 11 

Geometric  - 7 1 4 2 4 4 22 

 305 

 306 

Table 6. Counts of significant (P  < 0.05) contributions of variable groups for study area 2. All variables are derived from 307 

the ADS40-SH52 data. The group of geometric variables includes curvature, aspect and slope. 308 

Variable groups Betula sp. Larix decidua Picea abies Pinus sylvestris Total 

IHS-RGB - 4 2 3 9 

IHS-CIR - 7 1 4 12 

Geometric  - 2 3 2 7 

 309 

Tables 5 and 6 reveal that all variable groups contributed significant terms. Geometric variables and the RGB 310 

bands of the ADS40-SH40 data (study area 1) and IHS of the CIR bands of the ADS40-SH52 data (study area 2) 311 

seem to be particularly informative. For Acer sp. (study area 1) and for Betula sp. (study area 2), no significant 312 

terms were found.  313 

 314 

4.2. Step-wise variable selection 315 

The counts of significant terms remaining in separate logistic models for each tree species after step-wise 316 

variable selection are shown in Tables 7 and 8.  317 

Table 7. Counts of significant (P  < 0.05) contributions of variable groups for study area 1 318 

Variable groups Acer sp. Alnus sp. Betula sp. Fagus 

sylvatica. 

Fraxinus 

excelsior  

Abies alba Picea 

abies 

 

RC30-CIR 5 - - 8 10 - 10 33 

RC30-CIR-Ratio 6 - - 6 11 - 4 27 

RC30-CIR-IHS 8 - - 7 7 - 6 28 
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ADS40-RGB 5 - - 7 8 - 6 26 

ADS40-RGB-Ratio 6 - - 5 6 - 7 24 

ADS40-RGB-IHS 3 - - 7 5 - 8 23 

geometric 8 - - 2 9 - 10 29 

 319 

Table 8. Counts of significant (P  < 0.05) contributions of variable groups for study area 2. All variables are derived from 320 

the ADS40-SH52 data. 321 

Variable groups Betula sp. Larix decidua Picea abies Pinus sylvestris Total 

RGB - 5 7 4 16 

CIR - 4 8 7 19 

Ratio-RGB - 9 7 5 21 

Ratio-CIR - 9 9 7 25 

IHS-RGB - 4 8 7 19 

IHS-CIR - 3 5 8 16 

geometric - 8 8 4 20 

 322 

Tables 7 and 8 reveal that all variable groups contributed significant terms. CIR bands of the RC30 data (study 323 

area 1) and of the ADS40-SH52 data (study area 2) or their ratios seem to be particularly informative. For Abies 324 

alba, Acer sp., and Alnus sp. (study area 1) and for Betula sp. (study area 2), no significant terms were found. 325 

 326 

4.3. Cross-validation 327 

Neuronal network models for all tree species were ten-fold cross-validated using the different explanatory 328 

variable groups. For study area 1 best CCR and K are obtained when using the means and standard deviations of 329 

all variables (table 9 left). Best accuracies for study area 2 are obtained when using the original RGB and CIR 330 

bands both ADS40-SH52 (table 9 right). The results clearly show that the single usage of geometric variables is 331 

not very contributive for the classification of tree species (study area 1: K = 0.13, study area 2: K < 0).  For study 332 

area 1 up to 10% higher accuracies are obtained when using explanatory variables from both the ADS40-SH40 333 

and RC30 imagery. 334 
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 335 

Table 9. Overview of ten-fold cross-validation of the neuronal network models for all tree species based on different 336 

variable groups. The RGB variables are obtained from the ADS40-SH40 (study area 1) and the ADS40-SH52 data (study 337 

area 2). The CIR variables are obtained form RC30 (study area 1) and ADS40-SH52 data (study area 2). 338 

Variable groups Study area 1 Study area 2 

 

CCR K CCR K 

Geom. variables  0.351 0.133 0.532 -0.150 

RGB 0.663 0.552 0.780 0.631 

CIR 0.652 0.539 0.808 0.684 

Ratio RGB 0.663 0.552 0.780 0.631 

Ratio CIR 0.576 0.424 0.804 0.676 

RGB & CIR 0.712 0.625 0.831 0.729 

ratio RGB & CIR 0.682 0.579 0.821 0.707 

IHS RGB 0.685 0.583 0.779 0.622 

IHS CIR 0.560 0.403 0.800 0.672 

IHS  RGB & CIR 0.705 0.615 0.824 0.713 

all variables 0.762 0.698 0.765 0.635 

 339 

 340 

4.4 Confusion matrices 341 

The confusion matrices of the models with best CCR and K are summarized in Tables 10 and 11. 342 

Table 10. Confusion matrix for tree species classification (ten-fold cross-validated) in study area 1 using all geometric and 343 

spectral explanatory variables (mean and standard deviations of ADS40-SH40 and RC30 imagery) with the producer’s- and 344 

user’s accuracy of the classified tree segments of different tree species, CCR, and Cohen's kappa coefficient (K). The total 345 

number of segments is 955, of which 76% were correctly classified 346 

 347 

Field data   Classified as  

Study area 1 

ADS40-SH40 + 

RC30 

Acer sp. Alnus 

sp. 

Betula 

sp. 

Fagus 

sylvatica 

Fraxinus 

excelsior 

Abies 

alba 

Picea 

abies 

producer’s 

accuracy 

% 

K 

Acer sp. 17 2 2 21 15 4 6 25.4  

Alnus sp. 3 27 - 7 3 - 1 65.9  
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Betula sp. 1 2 14 4 - 1 5 51.9  

Fagus sylvatica. 15 14 4 233 9 5 9 80.6  

Fraxinus excelsior 10 5 2 14 120 - 2 78.4  

Abies alba 2 0 2 7 - 107 12 82.3  

Picea abies 2 4 7 11 2 12 210 84.7  

User’s accuracy % 34.0 0.5 45.2 78.5 80.5 83.0 85.7   

CCR        0.76 0.70 

 348 

Table 10 shows that best agreements are obtained for Picea abies (84.7%), Abies alba (82.3%), Fagus sylvatica 349 

(80.6%), and Fraxinus excelsior (78.4%). Only few Abies alba are misclassified as Picea abies and few 350 

Fraxinus excelsior as Fagus sylvatica, respectively. The most frequent failures happen in classifying the non-351 

dominant tree species Acer sp., Alnus sp., and Betula sp., which are often misclassified as the two dominant 352 

deciduous tree species Fagus sylvatica and Fraxinus excelsior. The obtained accuracies remain lower for the 353 

non-dominant tree species.  354 

The confusion matrix for the four classified tree species in study area 2 is summarized in table 11. It shows a 355 

high overall accuracy and a high kappa value. 356 

 357 

Table 11. Confusion matrix for tree species classification (ten-fold cross-validated)  in study area 2 using the 12 358 

explanatory variables (mean and standard deviation of the RGB and CIR bands) from ADS40-SH52 imagery with the 359 

producer’s- and user’s accuracy of the classified tree species, CCR, and Cohen's kappa coefficient (K). The total number of 360 

segments is 801, of which 84% were correctly classified. 361 

 362 

Field data Classified as   

Study area 2 

ADS40-SH52 

Betula sp. Picea abies Pinus 

sylvestris 

Larix 

decidua. 

producer’s 

accuracy % 

K 

Betula sp 58 7 3 7 77.6  

Picea abies 9 33 40 16 33.7  

Pinus sylvestris 4 10 169 12 86.7  
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Larix decidua 3 9 11 409 94.7  

User’s accuracy % 78.7 55.9 75.8 92.1   

CCR     0.84 0.74 

 363 

The analysis revealed that best agreements are obtained for Larix decidua (94.7%), Pinus sylvestris (86.7%), 364 

and Betula sp. (77.6%). The accuracy for Picea abies is lower (33.7%). It is often misclassified as Pinus 365 

sylvestris and less frequently as Larix decidua.  366 

 367 

4.5 Predictive mapping 368 

The tree species which have been modeled with > 90 % probability in study area 1 and 2 are depicted in Fig. 4. 369 

For a better visualization not all tree species are shown in study area 1. At first glance, a visual image analysis 370 

suggests that the agreements in most parts of the site are good. However, a more detailed image inspection 371 

confirms the results of table 10 and indicates that Acer sp. and Alnus sp. are often misclassified as Fagus 372 

sylvatica or Fraxinus excelsior.  Fig. 4 clearly shows that Fraxinus excelsior (light blue) is overestimated along 373 

forest borders in the upper left part of study area 1. Thus, the few Acer sp. and Alnus sp. are  difficult to 374 

recognize. 375 

In study area 2, a slight underestimation of Picea abies in favour of Larix decidua in the lower right part is 376 

visible. Apart from these misclassifications Larix decidua, Pinus sylvestris and Betula sp. show few 377 

mispredictions.  378 

 379 
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 380 

Figure  4. Top left: Part of ADS40-SH40 RGB orthoimage (histogram equalized) of study area 1. Top right: Classification 381 

with tree species > 90% probability based on ADS40-SH40 and RC30 explanatory variables. Bottom left: Part of ADS40 382 

SH52 RGB orthoimage (histogram equalized) of study area 2. Bottom right: Classification with tree species > 90% 383 

probability. For both classification maps: tree segments which have < 90% probability of a tree species are not colored. 384 

 385 

5. Discussion and conclusions 386 
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 387 

The potential and the limits of classifying the dominant tree species has been tested in two study areas with 388 

different terrain and forest conditions. The most significant achievement is the demonstration that multispectral 389 

ADS40-SH52 imagery with multinomial regression models proved to have a high potential to produce 390 

meaningful tree species classifications with a minimum effort involved in image acquisition, data pre-391 

processing, derivation of explanatory variables and field work. Promising classification results for 4-7 different 392 

tree species were confirmed with ground information and what can be seen visually on the imagery. However, 393 

this study also has some limitations which are briefly discussed below.  394 

 395 

5.1 Ground truth 396 

The tree samples were delineated in the field on aerial images, which means that well visible trees may have 397 

been preferred, or only the lighted parts of trees have been delineated. Additionally, trees may be shaded or 398 

partly hidden by others so that one image segment could contain more than one species. These uncertainties 399 

render the statistical evaluations relative. As long as models of the same data sets are compared, the results can 400 

be interpreted as declared in section 3.4.1. However, when comparing correct classification rates or kappa 401 

values to other studies, we emphasize that this is a qualitative approach. For the same reasons the model results 402 

were checked for plausibility by visual examination of the aerial photographs. 403 

 404 

5.2 Model choice and variable selection 405 

Since parametric models enable easy and experienced variable selection procedures and model diagnostics as 406 

well, the usage of GLMs was considered.  407 

According to Guisan et al. (2002) step-wise variable selection with the AIC criterion is often used as an analytic 408 

tool to find redundant explanatory variables which are then excluded from the model. However, the AIC 409 

criterion is adapted to linear models and should be handled with reservation when modeling in a transformed 410 

data space (e.g. GLMs).  411 
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In the present study, variable selection was misleading, suggesting that also geometric variables are powerful 412 

explanatory variables (see tables 7 and 8). The results of ten-fold cross-validations for all modeled tree species 413 

were different and revealed that for study area 1 geometric variables only in combination with the spectral 414 

variables and for study area 2 the original variables of RGB and CIR bands performed best. A real contribution 415 

of geometric variables to classify tree species was only obtained in study area 1. The reason for this might be the 416 

higher spatial resolution (0.25 m in contrary to 0.5 m in study area 2) of the canopy height model in area 1.  417 

 418 

5.3 Comparison with other studies 419 

Overall, the accuracies obtained in this study are in line with or higher than those in similar studies. However, a 420 

direct comparison is difficult due to the following aspects: 1) Higher accuracies are obtained with fewer species 421 

classes; 2) higher accuracies are obtained when inappropriate or no cross-validation is applied, 3) tree species 422 

classification is based on other sensors; and 4) the forest structure and tree species composition (affected by the 423 

alpine topography) of the two study areas seem to be more complex than they are in most similar studies.  424 

Overall accuracies between 75% and 89% are obtained in studies involving the multispectral classification of 425 

different coniferous species and one deciduous species. Our overall accuracy of 84% for four tree species in 426 

study area 2 is therefore placed in the upper range. Overall accuracies around 75% are obtained in most studies 427 

using CIR aerial images to classify Norway spruce, Scots pine, birch and aspen. E.g. Erikson (2004) obtained an 428 

overall accuracy of 77% and Brandtberg (2002) between 67% and 79%. Key et al. (2001) obtained an overall 429 

accuracy of 75% for the classification of four deciduous tree species using multi-temporal CIR aerial images. 430 

Olofsson et al. (2006) used multispectral imagery taken with a Zeiss/Intergraph DMC camera and obtained 88% 431 

overall accuracy to discriminate between Scots pine, Norway spruce and deciduous trees. Obviously, 432 

classification accuracies are lower the more tree species there are and if non-dominant tree species are included. 433 

In our study, the best overall correct classification (76%) was for seven tree species in study area 1, obtained 434 

using both ADS40-SH40 and RC30 data. Chubey et al. (2009) found a classification of 4-6 coniferous and 4-6 435 

deciduous species in Canadian forests (based on training by interpreters) to be 60-70% accurate.  436 
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In other studies, using tree-specific information from DSM obtained from very high resolution laser data (> 6 437 

points / m2) has been found to improve the classification of tree species substantially. For example, Ørka et al. 438 

(2009) obtained an overall classification accuracy of 88% for birch and spruce, and Heinzel et al. (2008) of 84% 439 

for discriminating between coniferous trees, beech and oak/hornbeam, when LiDAR was combined with CIR 440 

true orthoimages. Holmgren et al. (2008) obtained an overall accuracy of 96% when classifying groups of 441 

Norway spruce, Scots pine, and deciduous trees, using autumn multispectral images from Z/I DMC camera in 442 

combination with very high-resolution LiDAR data (50 points / m2). For the Swiss NFI and the Swiss Mire 443 

Protection Program this is less relevant since such dense LiDAR data is unlikely to be available for the whole 444 

country in the near future.  445 

 446 

5.4 Non-dominant tree species 447 

Although we found that in general our approach is very suitable for classifying tree species in different types of 448 

forest, a more detailed analysis of the misclassifications is needed.  Table 10 clearly reveals that most frequent 449 

failures happen in classifying the non-dominant tree species. A reason for this was the relatively small sample 450 

size of these non-dominant tree species - compared to the other species in a study area – which led to 451 

underestimation of these species. Another reason is that non-dominant tree species are often short and therefore 452 

partly obscured by nearby large and dominant trees, or by the merging of close crowns. 453 

Field visits in study area 1 and visual stereo-image interpretation revealed that these non-dominant tree species 454 

Acer sp., Alnus sp. and Betula sp. are often not grouped, have smaller crowns and are therefore partly covered 455 

by each other or by other more dominant species. Fig. 5 illustrates this situation. Visual analysis of the spectral 456 

ranges of each species moreover revealed very similar spectral properties between Alnus sp. and Acer sp. Even 457 

within species, spectral variability can be large because of illumination and view-angle conditions, openness of 458 

trees, natural variability, shadowing effects and differences in crown health. Spectral separability between 459 

species and the variability of trees within species have also been analysed and described in Leckie et al. (2005). 460 
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To overcome these problems, our approach is currently being tested in another study area using multi-temporal 461 

ADS40-SH52 images to separate non-dominant tree species with spectral similarities.  462 

 463 

 465 

Figure 5. Illustration to show the problems involved in identifying small and non-dominant deciduous trees in study area 1. 466 

The group of Fraxinus excelsior partly covers small trees like Acer sp. and Alnus sp., at the background Picea abies and 467 

Fagus sylvatica are dominant, whereas Betula sp. is characterized by having a small crown diameter.  468 

 469 

While misclassifications in study area 1 are mostly restricted to the non-dominant tree species, most errors in 470 

study area 2 involved Picea abies mostly being misclassified as Pinus sylvestris and less as Larix decidua. This 471 

was not surprising since the spectral signatures of Picea abies and Pinus sylvestris tend to overlap considerably, 472 

especially  in the partly shaded areas (see Fig. 6).  473 

Visual image inspection reveals that Picea abies is often partly covered by dominant larches at forest borders 474 

but correctly classified in open land. Additionally, interviews with local foresters revealed that at the time of 475 

recording the images of 2008, the vitality of the larches was affected by larch bud moth attack which could also 476 

explain the spectral similarity between Larix decidua and Picea abies. 477 
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478 

Figure 6. Illustration to show the problems involved in identifying Picea abies in study area 2. Both Picea abies and Pinus 479 

sylvestris are partly covered by large and dominant Larix decidua trees. Although having a small crown diameter, Pinus 480 

sylvestris is classified with higher accuracy than Picea abies. 481 

 482 

5.5 Operational use for the Swiss NFI 483 

The promising results and experiences made in this study are of great practical interest since many tasks 484 

necessary for the Swiss National Forest Inventory (e.g. support for stereo-interpretation of sample plots) and the 485 

Swiss Mire Monitoring Program (e.g. assessment of growth influence of certain tree species on mires) are based 486 

or will be based on these imagery. Actual and accurate maps of tree species and composition are needed by 487 

environmental agencies and land surveying offices to assess possible changes in species distribution or condition 488 

of other habitats. Currently, the tree species classification approach is being tested in other Swiss regions with 489 

the ADS40-SH52 and ADS80 sensor which has been in use since 2009. Continuity of this approach is 490 

guaranteed since the necessary input data (ADS40 / ADS80 imagery) is collected every three years nationwide 491 

by the Federal Geo-Information center (SWISSTOPO) and the classification of tree species will be based on the 492 

same sensors. Furthermore, the required segmentation of these images will be performed in-house in the 493 
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framework of other monitoring programs. Lots of cost-effective and additional field work won’t be needed since 494 

in-house existing or currently collected field samples of tree species elsewhere in Switzerland can be used. 495 

According to experts of the Swiss NFI, the classification accuracies obtained in this study are sufficient – 496 

especially regarding that no area-wide information on tree species distribution is available yet. Although the 497 

forest area of the two study areas (≈ 4 km2) is very small compared to the entire national forest area of approx. 498 

12’700km2, this semi-automatic classification approach is a valuable contribution since the methods developed 499 

in this study can be easily adapted to other forest areas. However, before this approach is used operationally, it 500 

should be tested for large areas (> 1000 km2). 501 

 502 

6. Outlook 503 

 504 

The most obvious opportunities for follow up are listed below: 505 

- NFI sample plots as training data will be used to reduce field work. 506 

- Further development is needed for testing larger areas, which may consist of several image strips recorded 507 

with the trees having a different phenological status. For this, radiometric correction within and between 508 

images strips should be taken into account as well as it is already performed e.g. in Chubey et al (2009). 509 

- Further research is needed to improve distinguishing non-dominant tree species. This should also include 510 

multi-temporal imagery for a better distinction of deciduous trees with spectral similarities. BRDF-related 511 

problems or influences of the BRDF in terms of classification accuracy should also be investigated.  512 
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