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ABSTRACT. The depth of snow cover is temporally and spatially heterogeneous at different scales in
Alpine regions. For snow hydrology/climatology the spatial variability of snow depths is a key parameter
for capturing the total amount of snow in a given area. Here a scale analysis of the spatial variability of
snow depths during the accumulation period is investigated. The development of the variability is
characterized by a parameter, �, describing the relationship between the standard deviation and the
mean of snow depths. The analysis includes two datasets: (1) 141 snow-depth point measurements
representing flat-field observations, and (2) snow precipitation from the numerical weather prediction
model COSMO-7. The results reveal that � is almost invariant at scales between 10 and 300 km. The
COSMO-7 data exhibit the same scale invariance above 50 km, indicating that the spatial variability of
snow depths is formed by the precipitation pattern at these scales. The scaling analysis of � allows
determination of the absolute accuracy of estimating the total amount of snow in a given area and helps
to validate different snow models or remote-sensing techniques by ground truth verification.

1. INTRODUCTION
Snow depth, HS, and its spatial distribution is a key
parameter in cold region sciences such as avalanche
formation/dynamics (e.g. McClung and Schaerer, 1993),
snow climatology (e.g. Marty, 2008) and snow hydrology
(e.g. DeWalle and Rango, 2008). Particularly in snow
hydrology, HS data can be used with a parameterization of
the snow bulk density (Jonas and others, 2009) to monitor
the seasonal development of mountain water resources (e.g.
in the Swiss Alps). Particularly for flat-field HS measure-
ments, the reliability of the simple parameterization of SWE
with HS has been shown (Egli and others, 2009). Therefore,
the scale analysis in this study focuses exclusively on snow-
depth readings. If an area of homogeneous snow distri-
bution can be found, a single point HS measurement is
needed to capture the total amount of snow in that area.
However, the snow cover is spatially highly variable (e.g.
Shook and Gray, 1996). This makes it difficult to provide
reliable estimates of the mean HS in a given region by HS
point measurements exclusively or by different interpolation
schemes (e.g. Erxleben and others, 2002). It also compli-
cates validation of the estimates of remote-sensing tech-
niques (Seidel and Martinec, 2004) or spatially distributed
snow models (e.g. Luce and others, 1999; Liston 2004;
Lehning and others, 2006).

Egli and Jonas (2009) reported that the spatial distribution
of HS measured on high-Alpine flat sites exhibits a
considerable heterogeneity at the scale of the entire Swiss
Alps. In fact, it was shown that the variability of HS,
quantified by the standard deviation, increases with in-
creasing mean during the accumulation period. This
dependency was characterized by the parameter � (see
Equation (2)) which was found to be similar for six seasons
(� � 0:84). The study thus implies that the point measure-
ments capture the mean of HS less reliably when snow is
accumulated in the Swiss Alps. It is further assumed that the
observed development of the spatial distribution of HS is
generated by the precipitation patterns from the Alpine

microclimatological regions (Laternser, 2002; Scherrer and
Appenzeller, 2006). Therefore, we hypothesize that at
smaller scales, within the micrometeorological regions, the
parameter � might exhibit a smaller value due to a higher
spatial homogeneity of precipitation originating from the
Alpine meteorology.

In this study, we perform a scale analysis of � during the
accumulation period at scales between 10 and 300 km over
the Swiss Alps, including a wider range of altitudes than in
previous studies. The analysis is restricted to flat measuring
sites without the use of spatially distributed modeling of the
snow cover on complex Alpine topography. For a compar-
able quantification, we use two independent datasets
representing flat-field HS estimations: (1) manual and
automatic snow-depth point measurements from the oper-
ational snow-measuring network in the Swiss Alps, IMIS
(Intercantonal Measurement and Information System; Rhy-
ner and others, 2002), and (2) the snow precipitation output
of the COSMO-7 (Consortium for Small-Scale Modelling)
weather prediction model (see http://www.cosmo-model.
org/) with a mesh size of 7 km.

A further objective of our scale analysis is to quantify the
dependency between the number of point measurements at
a given scale and the accuracy of estimating the total snow
amount (e.g. Famiglietti and others, 2008; Brocca and
others, 2010). This relationship can help to validate spatially
distributed snow models, different remote-sensing tech-
niques or rain/snow precipitation radar, particularly with
limited point measurement availability.

2. DATA
2.1. Automatic and manual point measurements
For the following scale analysis, 141 automatic and manual
HS point measurement stations were used (Fig. 1, triangles),
collecting data during seven winter periods from 2001/02 to
2007/08. The stations are located on flat open terrain with
minimal wind influence, defined as the standard for the
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Swiss operational snow-measuring network, IMIS (Rhyner
and others, 2002). The sites are considered representative of
snow conditions within a region around the point measure-
ments (Egli, 2008) and cover the Swiss Alpine region evenly,
in both the vertical (800–2990ma.s.l.) and the horizontal
direction (about 100 km�300 km).

The HS data were recorded at 30min intervals and were
aggregated to daily measurements by selecting the HS values
at midnight. Manual snow-depth readings are read on a daily
schedule (�0800h) from a snow stake at a flat measuring site
located at lower altitudes in the vicinity of housing (Marty,
2008). All 141 snow-depth estimations were merged into a
continuous dataset of daily HS measurement, while missing
or erroneous values were carefully checked for plausibility
and then interpolated and corrected manually.

2.2. COSMO-7 model output data
The numerical weather prediction model COSMO-7,
operated by MeteoSwiss (http://www.meteoschweiz.admin.
ch/web/en/research/consortia/cosmo.html), is a primitive
equation model with nonhydrostatic, fully compressible
dynamics. Among other meteorological parameters,
COSMO-7 provides predictions of rain and snow precipi-
tation on a regular grid of 7 km mesh size. It has been shown
that generally the COSMO-7 model is able to represent daily
snow precipitation (Egli and others, 2010). We used snow
precipitation derived from the assimilation mode (www.
cosmo-model.org), representing the best current stage of the
atmosphere of the model. From each COSMO-7 gridcell
next to the locations of the 141 snow-depth measurements,
daily snow precipitation output was extracted for the winter
periods 2004/05, 2005/06 and 2006/07. The daily snow
precipitation was cumulated from 1 November to 30 April.
This period can generally be considered as the accumulation
period of snow at high elevations in the Swiss Alps, but is not
appropriate for lower elevations. The implications of this
assumption are discussed further below. The summation of
snow precipitation should reproduce the accumulation
period of snow water equivalent as suggested by Egli and
others (2009). Possible implications of this procedure are
also discussed further below. Notably, the COSMO-7 output
provided a different and independent dataset, where

snow-depth point measurements on the ground were neither
implicitly nor explicitly included.

3. METHODS
3.1. Parameter �
This study focuses on the development of the spatial
variability of HS during the accumulation period only. The
accumulation period was defined from the beginning of
winter, where no snow is observed at all measuring sites, to
the date when the mean of HS reached its seasonal
maximum. We characterized the spatial variability of HS
as the standard deviation:

�ðx, tÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
N � 1

X
xðtÞ � xðtÞ
��� ���2

r
, ð1Þ

where xðtÞ is a HS reading for day t, and xðtÞ displays the
spatial mean of x over a sample of stations at a given date for
measurements at the 141 stations and COSMO-7 gridpoints
(in analogy to Egli and Jonas, 2009). Consequently, we also
determined the relationship of the HS variability to the mean
HS analogous to Egli and Jonas (2009):

�ð�xÞ � �x�, ð2Þ
where � was determined by a least-squares fit to the
exponential function. In the following, the relationship
between mean and standard deviation of HS is character-
ized by the parameter �, indicating the development of the
spatial variability of HS.

3.2. Scale analysis and sampling procedure
When analyzing smaller regions in the Swiss Alps, the
number of available stations decreases with decreasing
scale. Before implementing a sampling procedure for the
scale analysis of �, we examined the number of stations
sufficient to represent the standard deviation, �, assuming
no spatial structure of the snow-depth distribution. The
closed circles in Figure 2 show the dependency of � on the
number of samples calculated from a generated gamma
distribution with a mean of 1 and a standard deviation of 1.
The gamma distribution of snow depths corresponds roughly
to the distribution observed over the entire Swiss Alps at the

Fig. 1. Map of Switzerland with the locations of the 141 snow-depth measurement stations (triangles) covering the Swiss Alps. The squares
indicate possible boxes of the sampling procedure for the scale analysis. Box a: 50 km; box b: 25 km; box c (Davos): 2.5 km.
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winter maximum. The open circles in Figure 2 display the
same relationship calculated from the 141 existing HS
measurements. Both curves show that the standard deviation
is a biased estimator depending on the number of samples.
In order to cover as small a scale as possible, ten sampling
points (vertical dashed line in Fig. 2) were considered a good
compromise to sample � sufficiently.

For the scale analysis of �, the following procedure was
chosen: A scale L is represented here by a spatial domain,
from which station data are analyzed to calculate �. Such a
domain can be centered around any of the snow stations and
comprises a quadratic box of side length L. The following
procedure was used to determine �ðLÞ.
1. For a given scale, and a given snow station used as

reference station, randomly select ten (different) stations
located within the search domain centered around the
reference station. This selection may or may not include
the reference station.

2. Calculate � based on Equation (2) and data from the ten
stations selected above. If a search domain contains
fewer than ten stations (which may happen at small
scales), continue without calculating �.

3. Replicate steps 1 and 2 ten times for each of the 141
stations.

4. From these maximum 1410 � values, randomly select
five (different) � values and calculate the average.

5. Replicate step 4 a hundred times and calculate the mean
of the averaged beta resulting in �ðLÞ. The above
averaging procedure (steps 4 and 5) has been set up to
mitigate the scale-dependent number of � values
available after step 3.

6. Replicate steps 1–5 for each scale L between 10 and
300 km.

4. RESULTS AND DISCUSSION

4.1. Scale analysis of �
One objective here is to evaluate the initial hypothesis of
decreasing � with smaller scales. Figure 3 shows curves of
standard deviation of HS over the mean of HS for four
exemplary regions at different scales. Each point represents
1 day of the accumulation period during winter 2006/07
(Fig. 3a–c). The points are used to calculate � following
Equation (2), and to determine its regression (black lines).
The values of � in Figure 3 are almost equal, ranging from
0.836 to 0.907, while their maximum mean snow depths
differ depending on the sampled region. Note that Figure 3d
displays a trajectory based on measurements captured in the
region of Davos (Fig. 1, box c) during winter 2008/09.
During this period, five stations were available in an area of
about 1.2 km�2.6 km, including stations from the Wannen-
grat test site (Grünewald and others, 2010). Although only
five stations are included, the graph is additionally shown to
demonstrate that the trajectory at a very small scale reflects
behavior similar to the curves calculated from larger scales
using ten stations (Fig. 3a–c).

Figure 4 displays � as a function of scale for different
examinations:

1. Point measurements using three stations (�3, circles) and
ten stations per box (�10, points).

2. Point measurements restricted to an elevation band
between 1660 and 2990ma.s.l. and ten samples per
box (�High, crosses).

3. COSMO-7 data with ten samples per box (�COSMO,
triangles).

Each point represents the mean values of the sampling
procedure over the analyzed seasons, where the single
values deviate about �0:03 (�10, �COSMO, �High) and �0:06
(�3) from the mean. Figure 4 reveals that � exhibits similar
values for scales down to 25, 10 or even 2.5 km as is

Fig. 2. Standard deviation as a biased estimator depending on the number of sampling points: simulated gamma distribution (closed circles)
and 141 HS measurements (open circles). Circles indicate the mean over 5000 realizations, where the error bars denote the deviation from
the mean. The curve displays an approximation of the curve following Equation (4).
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observed at the scale of the entire Swiss Alps (300 km).
Note that the scale-invariant behavior of � is similar when
analyzing each season separately (data not shown). This
effect is rather astonishing as it is assumed (Egli and Jonas,
2009) that � for the entire Swiss Alps is formed by the
Alpine microclimatological precipitation pattern (Laternser,
2002). The results of an analysis of � for each individual
climatological region proposed by Laternser (2002) reveal
that �Clim.Region did not substantially deviate from the � of
the entire Swiss Alps (specific table not shown). This
finding, and especially the results in Figures 3 and 4, may
suggest that the spatial variability of HS is not only formed
by the large-scale precipitation patterns but also perhaps
mainly by other processes at smaller scales, even smaller
than those analyzed in this study. These processes may
include various snow distribution processes on smaller
scales (Balk and Elder, 2000), such as preferential de-
position of snow (Lehning and others 2008) and wind drift
(e.g. Liston and Sturm, 1998). At these smaller scales, the
roughness of the terrain surface becomes an increasingly
dominating factor. For this reason, it could be assumed that
the effect of increasing snow-depth variability with

increasing mean snow cover observed at very large scales
may be affected exclusively by the small-scale processes.
This would imply that the snow-depth point measurements
represent the snow cover exclusively very locally and do
not represent a larger region around the measuring site as
assumed (see section 2; Egli, 2008).

To evaluate whether the scaling invariance of � is caused
by small-scale processes or by the large-scale precipitation
patterns, we analyzed the independent dataset of COSMO-
7. Note that COSMO-7 estimates the snow precipitation on
a mesh of 7 km and does not account for small-scale
processes below that size. Moreover, the physical processes
of the model may be more appropriately reproduced by a
couple of points of the regular mesh (e.g. scale of �35 km),
rather than a single gridpoint. The results in Figure 4 reveal
that this additional dataset shows an almost constant scaling
behavior of �COSMO at scales from 300 to 50 km, as well as,
for example, �10. However, �COSMO exhibits a smaller value
than �10. This deviation can be explained by the fact that
COSMO-7 represents cumulated snow precipitation and
does not account for the processes of melting or sublimation
during the accumulation period. Particularly at lower

Fig. 3. Trajectories of standard deviation over mean of HS at different scales in the Swiss Alps. The lines indicate the least-squares fit of
Equation (2). (a–c) include ten stations from (a) the entire Swiss Alps, (b) a box of 50 km side length and (c) a 25 km box. (d) The trajectory
based on measurements in the Davos region.
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altitudes, the accumulation period is affected by melting
cycles, resulting in a generally smaller snow depth
(Laternser, 2002). This suggests that the assumption of a
strict accumulation period between 1 November and
30 April is not appropriate for lower elevations. However,
when the analysis of � is restricted to high-Alpine regions,
where only snow accumulation can be assumed, �High

reaches scale-invariant values of �High� 0.83, which is close
to �COSMO�0.84 (see Fig. 4). At the scale of 300 km
�High� 0.83 is comparable to � � 0:84 reported by Egli and
Jonas (2009), who analyzed snow depths in the same
elevation bands for that scale. The study further stated that,
at high-Alpine elevations, melting or sublimation is insignifi-
cant for the mass balance during the accumulation phase.
Therefore, cumulated COSMO-7 snow precipitation data
reflect the total amount of snow water equivalent (SWE)
during the accumulation period. The similar values of
�COSMO and �High suggest that the scale analysis obtained
here for snow depths may also be applied for SWE, at least
for high-Alpine sites. This is in line with the findings of Sturm
and others (2010) where 90% of the variance of SWE can be
explained by the variance of HS.

When analyzing the parameter � for different elevation
bands separately, the same scale invariance can be found.
However, the absolute value of � restricted to an elevation
band differs slightly from � including the entire range of
elevation. At the lowest elevation band, 800–1100ma.s.l.,
� � 0:87 exhibits the highest increase in snow-depth vari-
ability with increasing mean due to overlapping melting and
accumulation cycles. However, in higher elevation bands
(e.g. 1600–2100ma.s.l.), � decreases, reaching its lowest
value, and increases again when restricted to high-Alpine
elevations, �High, which can also be found with �COSMO.
Because �COSMO does not include the process of melting,
the difference of altitudinal bands cannot be observed in the
analysis of �COSMO.

We conclude that at high-Alpine sites, the spatial
variability of HS at scales between 50 and 300 km stems

from the precipitation pattern of the Alpine microclimato-
logical regions. At scales between 25 and 50 km, �COSMO

decays rapidly, which may be attributed to technical
aspects of the model itself, where neighboring gridcells
may not deviate as much as observed on the ground and
only a couple of gridpoints may be able to represent the
physical processes adequately. However, for the point
measurements, �3 and �10 remain scale-invariant until 25
and 10 km (or even 2.5 km; Fig. 3d), which may stem from
small-scale precipitation patterns or from small-scale
processes near the snow surface. At these scales, we
cannot determine from which processes the increasing
variability with increasing mean may stem. Nevertheless,
the quantification of � determined here and its scale-
invariant behavior may help to provide a small-scale
subpixel parameterization of a distributed snow model.
Particularly for a stochastic model approach, where the
mean and the standard deviation of the probability density
function (PDF) are needed (e.g. Luce and others, 1999;
Liston, 2004; Perona and others, 2007), the quantitative
evaluation of � for different scales may be helpful.

4.2. Accuracy of estimating the mean of snow cover
The second objective of this study addresses the question:
how accurately can we estimate the total snow amount at a
given scale using a small number of flat-field snow-depth
measurements? The results in Figures 3 and 4 show that the
standard deviation increases with increasing mean quanti-
tatively similarly for scales between 10 and 300 km with an
exponent � � 0:9 considering sites at 800–2990ma.s.l.
This means that the uncertainty of estimating the mean
snow depths is increasing if the number of stations is
constant during the accumulation period. Conversely, to
obtain absolute accuracy in the capture of mean snow
depths, more HS point measurements are needed the more
snow is accumulated in a given region. Generally, the
absolute accuracy of a measurement depends on the
number of sampling points, N, and the standard deviation,

Fig. 4. Scale analysis of � for two data sources (point measurements and COSMO-7), for an elevation band between 1660 and 2990ma.s.l.
and for different numbers of stations (three and ten) used for the scale analysis. The star denotes � determined by five stations located in the
Davos region at a scale of 2.5 km.
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�, given by

absolute accuracy ¼ � 1
2

�ffiffiffiffi
N

p :

The standard deviation of snow depths in the Swiss Alps
depends on the mean following Equation (2). Therefore the
absolute accuracy is given by

absolute accuracy ¼ � 1
2

�x�ffiffiffiffi
N

p , ð3Þ

where � is scale-invariant at scales from 10 to 300 km. The
results in Figure 4 can now be applied using Equation (3) to
evaluate the minimum number of sampling points required
to obtain a certain confidence interval (Brocca and others,
2010) for the estimate of the total snow amount in a
considered area. Figure 5 shows the absolute accuracy for
various numbers of samples following Equation (3)
(� � 0:9). The relationship in Figure 5 is of practical
importance for ground truth verifications of remote-sensing
techniques and for the validation of spatially distributed
snow models, particularly when limited data are available
(Famiglietti and others, 2008).

Figure 4 shows � calculated from 141 point measure-
ments but with only three samples per scale (�3). Due to this
smaller number of samples, a scale analysis can be provided
down to 10 km. However, as the standard deviation is a
biased estimator (Fig. 2), �3 is smaller (�0.85) than �10. The
bias of the standard deviation can be approximately
quantified by (Kenney and Keeping, 1951; http://mathworld.
wolfram.com/StandardDeviationDistribution.html):

�observed ¼ �real 1� 3
4N

� �
, ð4Þ

where N is the number of sampling points. The curve in
Figure 2 shows Equation (4) and indicates that this
approximation fits the observed relationship well. The
results of � (Fig. 4) and its relationship in Equation (2)
may be used to analyze fewer point measurements for
plausibility and to correct the obtained standard deviation
to a value closer to the expected real value. This correction

has further practical implications in snow hydrology, where
the development of the snow-covered area during the
ablation period is strongly linked to the spatial distribution
of snow cover at the end of the accumulation period (see
Egli and Jonas, 2009). In particular, the development of the
fractional snow-covered area during melt is determined by
the PDF of the snow distribution and its standard deviation
before melt starts (e.g. Luce and others, 1999; Essery and
Pomeroy, 2004).

5. CONCLUSIONS AND OUTLOOK
The relationship between the total amount of snow and its
variability during the accumulation period is observed to be
similar at scales between 10 and 300 km in the Swiss Alps.
The variability of snow depth is quantified in terms of
standard deviation over mean of snow depth. This scale-
invariant relationship can be applied for a subpixel
parameterization of distributed snow models and for a
stochastic modeling approach of snow distribution, where
the mean and standard deviation of the PDF are needed.

The absolute accuracy of the total snow content depends
on the averaged snow depths and on the sampling
scheme, i.e. numbers of stations available to estimate the
mean of accumulated snow. We quantified the absolute
accuracy at different scales, which can be applied to
validate different spatially distributed snow models or
remote-sensing techniques.

We also showed that the numerical weather prediction
model COSMO-7 reproduced the same scale invariance of
the relationship of mean cumulated snow precipitation and
its standard deviation for scales between 50 and 300 km.
This suggests that the variability of snow depths at these
scales stems from the meteorological precipitation patterns
in the Swiss Alps. However, at scales between 10 and 50 km
the observed variability may either originate from small-
scale precipitation patterns or from other small-scale
processes influencing the snow cover on the ground. Future
work may investigate the development of snow depth or
cumulated precipitation variability at these scales. Tools

Fig. 5. Absolute accuracy of mean snow-depth estimations depending on the number of point measurements.
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such as high-resolution precipitation radar or physically
based snow-cover models could be used.
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