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[1] The heterogeneous mountain snow cover is challenging
the eye and the analytical mind of the observer. The snow
distribution affects water resources, natural hazards such as
avalanches and ecology. While a lot of recent research has
helped to better understand this snow distribution and the
processes that cause the heterogeneity, it has not yet been
possible to predict snow distribution satisfactorily on the
basis of terrain parameters alone. We present a model of the
mean snow depth in topographic control units as a function
of two terrain parameters: the conventional elevation plus a
fractal roughness parameter. For this we used a unique data
set of high resolution measurements of snow depth from an
airborne laser scanner. The model captures the heterogeneous
snow distribution by merely analysing the terrain and the
mean precipitation. This unusually simple relationship holds
for clusters of the snow depths of small topographical units.
By applying fractal analysis, we describe the roughness of
the terrain and use this parameter for the prediction of
snow deposition. Rougher terrain holds less snow than
smoother terrain. This finding is important not only for
avalanche warning or eco‐hydrological applications, but
also for reliably predicting how snow water storage may
change in the light of the pronounced climate change
already ongoing in mountain regions. Citation: Lehning, M.,
T. Grünewald, and M. Schirmer (2011), Mountain snow distribution
governed by an altitudinal gradient and terrain roughness, Geophys.
Res. Lett., 38, L19504, doi:10.1029/2011GL048927.

1. Introduction

[2] The snow distribution affects not only the storage of
snow water [Balk and Elder, 2000] and the avalanche danger
[Schweizer et al., 2003], but also the local conditions for plant
and animal life [Wipf et al., 2009]. Snow distribution patterns
in mountains are shaped by a general altitudinal gradient of
precipitation [Frei and Schaer, 1998], the locally varying
deposition of snow [Lehning et al., 2008] and subsequent
redistribution by wind [Gauer, 2001] and snow slides
[Bernhardt and Schulz, 2010; Sovilla et al., 2010]. They are
also likely to be severely affected by climate change [Barnett
et al., 2005; Marty, 2008; Bavay et al., 2009].
[3] Generations of scientists have attempted to identify the

most significant characteristics of snow distribution in com-
plex terrain and have made considerable progress in under-
standing the process of snow deposition [Lehning et al.,
2008] or the statistical scaling properties of the snow cover
[Kuchment and Gelfan, 2001; Shook and Gray, 1996; Mott

et al., 2011; Schirmer and Lehning, 2011]. This includes the
persistency of drift features [Schirmer et al., 2011], as well as
the role of preferential deposition in the survival of small
glaciers [Dadic et al., 2010]. However, one very basic question
still remains unanswered: “How much snow is there where on
the mountain?”. The problem is twofold. First, precipitation
gradients (with altitude) in mountains are not well established
because (i) the precipitation measurement networks cover
higher altitudes insufficiently [Daly et al., 2008; Blanchet et
al., 2009], and (ii) the snow precipitation is in general and in
particular at higher altitudes difficult to measure [Sevruk,
1997]. Second, even if the local precipitation rates were
known, the preferential deposition [Lehning et al., 2008] and
the snow redistribution mainly by wind makes the assessment
evenmore challenging. Some assumptions tend for example to
bemade that rockwalls with an average slope ofmore than 60°
do not accumulate any snow [Blöschl and Kirnbauer, 1992]. It
is becoming increasingly feasible tomeasure snow distribution
with airborne and terrestrial laser scanners [Sovilla et al., 2010;
Prokop et al., 2008], and thus to analyse distributed snow
depths in mountains [Deems et al., 2006; Trujillo et al., 2007;
Grünewald et al., 2010]. Such analyses havemainly confirmed
the earlier finding [Erxleben et al., 2002; Schmidt et al., 2009]
that local terrain parameters do not explain the snow depth
distribution. A mechanistic prediction of snow distribution
appears possible if the wind transport of snow is modelled
[Lehning et al., 2008; Mott et al., 2010; Mott and Lehning,
2010], and also in simpler estimates of terrain‐based wind
effects [Winstral and Marks, 2002]. Reliable wind field esti-
mates are however difficult to obtain [Raderschall et al., 2008;
Bernhardt et al., 2009] so this approach is unlikely to become
operational or have larger scale applications.
[4] The hypothesis put forward here is that terrain roughness

might be used to characterize snow distribution given the
qualitative observation that rough and rocky terrain has often
thin snowwhen compared to smoother terrain (e.g., a meadow)
in the same area [Wirz et al., 2011]. The idea of using a non‐
local (roughness) parameter is also based on the observation
that the simple terrain characteristics typically fail because they
only look at local terrain parameters as, e.g., derived for one
grid point of a digital elevation model (DEM) and that good
correlation with terrain parameters requires averaging [Jost
et al., 2007]. In the following, we analyze airborne laser scan
data on snow depth distributions in two Alpine catchments and
show how the mean snow depth in sub‐areas is explained by
elevation and a fractal roughness parameter.

2. Experimental Area and Definition
of Topographic Units

[5] A visual inspection of topography and the associated
snow distribution at our study sites in the central Swiss Alps
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(Figure 1) suggests that terrain sub‐units can be defined that
have similar characteristics distinct from those of neigh-
boring units. Such sub‐units may be a rock face, a bowl, a
ridge or a meadow. Here we analyze the mean snow depths
in distinct topographical sub‐units at the sites. The snow
depths as derived from airborne laser scans have a mean
accuracy of at least 0.1 meters [Schirmer et al., 2011]. Note
that in hydrology, it has been a successful concept to work
with “hydrological response units”, in which grid points are
lumped together according to their similarity in terms of
their hydrological response [Rinaldo et al., 2006]. Figure 1
shows the sub‐areas defined manually for our two investi-
gation areas. Until it will be possible to decompose the
terrain automatically, e.g., by clustering methods, suitable
sub‐areas can easily be found by visual inspection.

3. The Altitudinal Gradient of Snow Depths

[6] Snow depth deviation (from the total area mean snow
depth), DHS, in the sub‐areas was analyzed using elevation
as the explanatory variable (Figure 2). Elevation explains
only about 20% in mean snow depth (r2 = 0.21) variability,
although elevation is typically used as the only explanatory
variable [Grünewald and Lehning, 2011]. The most signifi-
cant deviations from a linear correlation are for sub‐areas
with rough terrain, as defined below. A significant deviation

was also found for a sub‐area, where a large avalanche had
redistributed snow from steeper areas to less steep areas. The
analysis shows that elevation is an important variable in snow
depth distribution but only explains a small part of the vari-
ation in mean snow depth. Our data reduction through clus-
tering in sub‐areas already improved themodel: a comparison
to a model using the original data at the 1 m grid resolution
shows that only 10% of the variance is explained if individual
data points are considered at the measurement resolution.

4. Introduction of the Roughness Parameter

[7] For all sub‐areas, scaling parameters were determined
[Sun et al., 2006] to describe the local roughness of the
terrain. Terrain characteristics have long been described
using scaling quantities. However, while it is common to
describe snow – atmosphere exchange with the aerodynamic
roughness [e.g., Yang et al., 1997], the use of geometric
terrain scaling to make predictions on snow distribution is
novel. Here we use scaling quantities derived from the semi‐
variance (SV) plot, which is basically a second‐order
structure function defined by:

SV xð Þ ¼ 1

2N xð Þ
X

i;j2N xð Þ
z ið Þ � z jð Þð Þ2: ð1Þ

Figure 1. Situation of study plots in Switzerland (inset) and snow depth in the “Wannengrat” (April 9, 2009) and “Lagrev”
(April 7, 2009) areas with sub‐areas (black lines). Maps reproduced with permission (Swisstopo, JA100118). A smooth and
rough sub‐area are shown as examples from Lagrev and are used to generate the terrain variograms in Figure 3.
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where N(x) is the number of point pairs (i, j) in each
distance class x. In particular, we investigated (i) the
variance on a scale of 1 m (i.e., the measurement reso-
lution) expressed by the semi‐variogram intercept, g, and
(ii) the roughness parameter D (fractal dimension) for the
summer terrain. D is for a surface related to the slope a
of the semi‐variogram by:

D ¼ 3� �

2
: ð2Þ

[8] The parameters g anda are determined by a logarithmic
least squares fit to the semi‐variance curve. Examples of
semi‐variograms for two sub‐areas, a rough one and a smooth
one, are given in Figure 3. The sub‐areas have also been
marked in Figure 1. From the figure it can be seen that the
linear fit allows a very reliable estimate of g and a. A small
slope of the semi‐variogram (large D) is usually associated
with greater roughness [Sun et al., 2006]. In addition to
altitude and the scaling parameters g and D, we investigated
the most obvious topographic parameters slope and northing,
where northing is defined as the angle formed by the pro-
jection of the normal to the surface onto the horizontal plane
with North. The average value for a sub‐area was determined
by the most frequent value in a histogram with 10 degree
intervals.
[9] A stepwise regression model starting with the five

parameters elevation (h), g, D, slope and northing elim-
inates the parameter slope as non‐significant. The rejection
of slope is probably because of (i) a strong correlation
with g and (ii) less explanatory power than g with respect
to DHS. The first acceptable model retains the four‐

parameters (each parameter significant at the 1% level) h,
g, D and northing:

DfHS ¼ 0:83eh� 1:18 e� � 0:18enorthing þ 0:49 eD: ð3Þ

Note that in equation (3) the variables have been nor-
malized (tilde) to zero mean and a standard deviation of 1
such that the coefficients become directly comparable.
This four parameter model is a good model in the sense
that it has a high explanatory power (adjusted r2 = 0.79)
and that the residuals have zero mean, are normally dis-
tributed and uncorrelated (not shown). Since 38 data
points are fitted with four parameters, a simpler model is
searched by eliminating less significant parameters. It
turns out that if only the parameters g and h are retained,
most of the variance can be explained. This “best choice”
two‐parameter model, in which the altitude, h, is prefer-
ably complemented by g in the predictive equation (4)
explains 73% of the variance (adjusted r2 = 0.71):

DHS ¼ �5:13þ 2:3610�3h� 1:37�: ð4Þ

[10] Normalizing the variables results in:

DfHS ¼ 0:00þ 0:87 eh� 0:82 e�: ð5Þ

The corresponding two‐dimensional residual plot (Figure 4)
suggests a stable model, given the relatively small number
of topographical units (38). This is confirmed by a robust
regression, which yields basically identical coefficients and
further supported by a standard residual analysis (not
shown). Note that the two‐parameter model can explain a
major part of the local snow depth variation despite the fact
that a model with either of the parameters alone only ex-
plains a very small fraction. Also note that g is highly
correlated (r2 = 0.76) with the more commonly used
roughness parameter D. The fact that g has a little more

Figure 3. Variograms for a rough and smooth sub‐area as
marked in Figure 1. The linear fit to the data defines the
magnitude of roughness, g. The observations marked with a
rectangle are from rougher surfaces (g > m2).

Figure 2. Scatterplot of elevation and snow depth scaled
by mean snow depth, DHS. Crosses (circles) refer to obser-
vations in the Lagrev (Wannengrat) area. The observations
marked with a rectangle are from a rough surface, with g
larger 0.3 m.
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explanatory power than D suggests that it is the small scale
roughness, which is most important. g, which is often also
called the magnitude of roughness, gives the terrain varia-
tion at the measurement scale (1 m).

5. Conclusions

[11] We have shown that the relative distribution of
snow depth is governed by topographical control units,
which are characterized by their summer terrain surface
roughness and a general gradient in altitude. The rough-
ness can be described by parameters derived from a semi‐
variance scaling analysis. The influence of roughness may
present a combination of two physical effects: i) in alpine
terrain, there is a close relationship between roughness and
mean slope angle, which has also been confirmed in our
study (not shown). However, mean slope angle does not
have the same explanatory power as the roughness. This
suggests that a further physical mechanism is at work. We
hypothesize that ii) wind exposed areas are typically
rougher than sheltered areas in this type of terrain since
sheltered areas also accumulate more fine particles in the
summer and tend to develop soils easier. The roughness
parameter would therefore measure the combined effect of
terrain steepness and soil development, which has to be
tested by future investigations.
[12] The analysis presented here is based on a relatively

small number of control units and in only two small areas
in the central Swiss Alps. Based on our physical process
understanding, we believe the dependence of snow dis-
tribution on altitude and surface roughness to be a uni-
versal feature. This needs, however, to be tested with
larger data sets in future in different climates and other
mountain environments.
[13] The analysis has thus far been restricted to the peak

of winter snow distribution. In how far the results can be
transferred to individual storms [Schirmer et al., 2011], still

needs to be explored. A typical snow deposition during a
single storm is likely to be similar to the peak of winter
snow distribution [Schirmer and Lehning, 2011] and it can
also be expected that the terrain roughness parameters will
play a significant explanatory role.
[14] Overall, the simple relationship presented here pre-

dicts how the distribution of winter snow can be mapped
onto topographic control units. These units can exclusively
be described by their summer terrain digital elevation
model. This is very relevant for forecasting how much snow
is where, which will first help hydrological, climatological
and meteorological analyses.
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