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Abstract 

Recent studies have revealed large unexplained variation in heat requirement-based phenology 

models, resulting in large uncertainty when predicting ecosystem carbon and water balance 

responses to climate variability. Improving our understanding of the heat requirement for spring 

phenology is thus urgently needed. In this study, we estimated the species-specific heat 

requirement for leaf flushing of 13 temperate woody species using long-term phenological 

observations from Europe and North America. The species were defined as early and late 

flushing species according to the mean date of leaf flushing across all sites. Partial correlation 

analyses were applied to determine the temporal correlations between heat requirement and 

chilling accumulation, precipitation and insolation sum during dormancy. We found that the heat 

requirement for leaf flushing increased by almost 50% over the study period 1980-2012, with an 

average of 30 heat units per decade. This temporal increase in heat requirement was observed in 

all species, but was much larger for late than for early flushing species. Consistent with previous 

studies, we found that the heat requirement negatively correlates with chilling accumulation. 

Interestingly, after removing the variation induced by chilling accumulation, a predominantly 

positive partial correlation exists between heat requirement and precipitation sum, and a 

predominantly negative correlation between heat requirement and insolation sum. This suggests 
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that besides the well-known effect of chilling, the heat requirement for leaf flushing is also 

influenced by precipitation and insolation sum during dormancy. However, we hypothesize that 

the observed precipitation and insolation effects might be artifacts attributable to the 

inappropriate use of air temperature in the heat requirement quantification. Rather than air 

temperature, meristem temperature is probably the prominent driver of the leaf flushing process, 

but these data are not available. Further experimental research is thus needed to verify whether 

insolation and precipitation sums directly affect the heat requirement for leaf flushing.  

Introduction 

In plants, the timing of spring phenological events, such as leaf flushing or fruit ripening, is 

related to the temperature sum of the preceding period (Réaumur, 1735). This temperature sum, 

also called the heat requirement, is often calculated using the classical growing degree day 

concept (Baskerville &  Emin, 1969, Chuine et al., 1998, Sarvas, 1972, Wang, 1960). Growing 

degree day-based phenology models are widely used to simulate plant phenology and their 

response to climate change (Chuine, 2000, Hänninen &  Kramer, 2007, Richardson et al., 2013, 

Schwartz, 2003). However, recent studies have revealed that this approach can lead to large 

unexplained variation, resulting in considerable uncertainty when predicting ecosystem carbon 

and water balance responses to climate variability (Jeong et al., 2012, Keenan et al., 2012, 

Kucharik et al., 2006, Levis &  Bonan, 2004, Migliavacca et al., 2012, Piao et al., 2007, 

Randerson et al., 2009, Richardson et al., 2012). In order to decrease such uncertainties, we need 

to improve our understanding of how heat requirements may interact with other environmental 

cues to affect spring phenology. By exploring these potential correlations, predictions of spring 

phenology could be improved and hence increase our understanding of the global carbon balance 

in the context of climate warming (Richardson et al., 2012). 
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The concept of heat requirement for spring leaf flushing implies that temperate woody species 

require a certain amount of heat to initiate leaf flushing after winter dormancy. The concept of 

accumulated heat is most often used as a measure for the physiological time or heat requirement 

(Baskerville &  Emin, 1969, Wilson &  Barnett, 1983). Theoretically, the heat requirement for 

leaf flushing remains (relatively) constant, even if temperatures during dormancy vary from year 

to year (Baskerville &  Emin, 1969, Wilson &  Barnett, 1983). As such, several studies that 

compare phenology models have reported that models with constant heat requirement performed 

similarly or even better than more sophisticated models that account for other environmental 

drivers (Linkosalo et al., 2008, Vitasse et al., 2011). However, there are also numerous studies 

suggesting that the amount of heat required to initiate leaf flushing after winter is inversely 

correlated with the duration of cold temperatures during dormancy (hereafter called chilling 

requirement) (Botta et al., 2000, Fu et al., 2013, Harrington et al., 2010, Jeong et al., 2012, 

Murray et al., 1989, Zhang et al., 2004). Considering the rapid rise of winter temperatures in the 

Northern Hemisphere (Fu et al., 2014b, IPCC, 2013), chilling accumulation may have decreased 

below the required chilling threshold in many regions during the past decades, which 

subsequently may have resulted in increased heat requirement for spring leaf flushing. In the 

present study, we therefore test the hypothesis that heat requirement for leaf flushing have 

increased in recent decades in the Northern Hemisphere due to warming winters that have 

provided lower duration/amount of chilling accumulations (Fu et al., 2014b). 

 

Among temperate woody species, different chilling and heat requirements for leaf flushing have 

been documented. For example, Murray et al. (1989) reported larger chilling requirement for late 

flushing species (such as Fagus sylvatica L) than for early flushing species. Analysis of the 
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Belgian phenology network dataset indicated larger chilling requirement for Fagus sylvatica L 

than for Quercus robur L and Betula pendula L (Fu et al., 2012a). This species-specific chilling 

requirement suggests differentiated heat requirement responses to climate warming. Unlike late-

flushing species, changes in the heat requirement of some early flushing species are more likely 

to be subtle or even absent, because their low chilling requirement may be still fulfilled in 

warmer winters. Therefore, we expect a more pronounced increase in heat requirement over the 

last decades in late than in early flushing species. How the temporal changes of chilling 

accumulation are affecting the heat requirement for spring leaf flushing among different woody 

species has not yet been thoroughly investigated at large scales and over large areas.  

 

Besides winter chilling, the heat requirement for initiating leaf flushing may also be influenced 

by other environmental factors, such as day length (Basler &  Körner, 2012, Basler &  Körner, 

2014, Heide, 1993, Wareing 1953), light intensity (Caffarra &  Donnelly, 2011, Fitter &  Fitter, 

2002, Partanen et al., 1998, Partanen et al., 2001) and precipitation (Fu et al., 2014c, Piao et al., 

2011, Shen, 2011, Yuan et al., 2007). The mechanism of light control on plant phenology is still 

unclear because of the difficulty to disentangle the effects of day length and light intensity (Calle 

et al., 2010), especially given their correlation with temperature. Total daily insolation could be 

used as an integrated measure of solar intensity at a particular site and day of the year (Calle et 

al., 2010).  In the present study, we therefore investigate the correlation between heat 

requirement and light using the sum of daily absorbed downward short wave radiation over the 

time period preceding leaf flushing (hereafter referred to as insolation sum). Other studies have 

suggested an important role for precipitation (Piao et al., 2011, Shen, 2011, Yuan et al., 2007). A 

positive spatial correlation between heat requirement and precipitation sum was found over the 
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northern middle and high latitudes using remote sensing-based NDVI data (Fu et al., 2014c). In 

contrast, in areas with dry winters (e.g. Central Asia), negative spatial correlations were found 

between precipitation and heat requirement (Yu et al., 2003). Moreover, the above-mentioned 

spatial correlations do not necessarily hold inter-annually (Dunne et al., 2004, Jochner et al., 

2013). Therefore, a temporal analysis of the correlations between heat requirement, chilling, 

precipitation and insolation sum, using long-term in situ data, may provide insights into the 

relative importance of these three environmental factors in determining spring leaf flushing dates 

and how these are affected by global warming. 

 

In this study, we estimated the species-specific heat requirement for leaf flushing of 13 temperate 

woody species by combining long term, in situ series of phenological observations from Europe 

and North America and gridded climate data. The species were defined as early and late flushing 

species according to the mean date of leaf flushing across all observation sites. We applied a 

partial correlation analysis to determine the temporal correlations between heat requirement and 

chilling accumulation, sum of precipitation and insolation during the dormancy period. The 

objectives of our analysis were (1) to determine the temporal changes of heat requirement for 

spring leaf flushing over the period 1980-2012, specifically we test the hypothesis that a more 

pronounced increase in heat requirement in late than in early flushing species; and (2) to relate 

changes in the heat requirement for leaf flushing to differences in chilling, precipitation and 

insolation. 
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Materials and Methods 

In situ phenology dataset and climate data 

An extensive dataset of in situ phenology observations across northern temperate regions was 

obtained from the Pan European Phenology network (http://www.pep725.eu/), which provides an 

open European phenological database comprising multiple plant phenological records. 

Additionally, a phenology data set for Syringa chinensis (lilac) was obtained from a network of 

sites distributed across the US (USA National Phenology Network, USA-NPN, 

https://www.usanpn.org/results/data). For this study, we selected the records of leaf flushing date 

of 13 woody species for the period 1980 – 2012. Data were excluded from the analysis when the 

study species were reported to flush later than the end of June. The details of the selected species 

are shown in Table 1. The leaf flushing dates extracted from the PEP dataset were defined 

according to the BBCH code (Biologische Bundesanstalt, Bundessortenamt und Chemische 

Industrie) (Meier et al., 2007), whereas leaf flushing dates from USA-NPN lilac dataset were 

defined as the first observation when leaf flushing occurs. For each species, leaf flushing dates 

were recorded at least in 10 phenological sites reporting minimum 15 year data records over the 

period 1980-2012. In total, 2594 phenological sites and 315142 phenological records were used. 

The location of the selected phenological sites is shown in Figure 1. 

 

We used a gridded climate dataset, including daily mean air temperature, precipitation and 

insolation (absorbed downward short wave radiation), with a spatial resolution of 0.5º. The 

climate data were obtained from a bias-corrected reanalysis climate dataset covering the study 

period, i.e. 1980-2012 (Beer et al., 2014). To investigate the correlation between heat 
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requirement and precipitation and insolation sum, we calculated the cumulative precipitation and 

insolation as the sum of the precipitation and insolation during the dormancy period that was 

defined as the time period from the day when the land surface first froze in the previous autumn 

to the day of leaf flushing. The soil freeze status was derived from the land surface dielectric 

status, obtained by passive micro-wave remote sensing. Specifically, we used combined datasets 

obtained by SMMR and SSM/I, providing daily land surface freeze status from 1979 to 2011 

with a spatial resolution of 25 km (Kim et al., 2012). In the year 2012 and for the years when the 

land surface did not freeze, the onset date of the dormancy period was fixed on the mean date of 

land freeze over the study period 1980-2012. At those sites where the soil never froze during the 

study period, the starting date of heat accumulation was fixed on 1st January.  

 

Heat requirement for spring leaf flushing 

Many studies have shown that measuring the heat accumulation in late winter / early spring can 

provide a physiological estimation of spring leaf flushing dates in temperate woody species 

(Cannell &  Smith, 1983, Chuine, 2000, Hänninen, 1990, Kramer, 1994b, Vitasse et al., 2011). 

The heat requirement for leaf flushing is typically calculated using a linear regression (Murray et 

al., 1989) (equation 1) or a sigmoid function of the average daily air temperature (Hänninen, 

1990, Kramer, 1994b) (equation 2), following these equations: 

0

( )
LFt

req t th t th
t

HU T T if T T= − >                                                      (1) 

0

0.185*( 18.4)

28.4
=

1+e

LFt

req HU t th HU Tt
t

HU D if T T where D − −= >                       (2) 
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Where HUreq is the heat unit (HU) requirement for leaf flushing, DHU are the daily heat unit, tLFis 

the day of leaf flushing, t0 is the starting date for heat accumulation, Tth is the threshold 

temperature for heat accumulation, and Tt is the mean daily air temperature. The parameter 

values of the function (2) were fitted by Hänninen (Hänninen, 1990) based on Sarvas’ 

experimental results on Betula pendula Betula pubescens and Populus tremula in Finland 

(Sarvas, 1972). Temperatures above 5°C normally contribute to heat accumulation in temperate 

regions (Hänninen, 1990, Kramer, 1994a, Perry, 1971, Smith &  Kefford, 1964) (but 0°C in 

Sarvas’ study), and is therefore used as a threshold for Tth. Physiologically, t0 is the date when 

endodormancy is released (Hänninen, 1990, Lang et al., 1987), here assumed to be the day when 

the land surface freezes or otherwise January 1st (see earlier). The heat requirement for leaf 

flushing was calculated using both equations (1) and (2), but the results were very similar (1), as 

shown in Figure S1 and Figure S2. Hereafter, we therefore only report results obtained with the 

sigmoid function. 

 

To investigate the correlation between heat requirement and chilling requirement, we calculated 

the species-specific chilling requirement at each site. The chilling requirement is normally 

defined as the time period (days or hours) during which temperatures were within a specific 

range. Most previous studies have reported that temperatures slightly above freezing are most 

effective in satisfying the chilling requirement (Coville, 1920, Kramer, 1994b), and suggested 

that the temperature range between 0°C and 5°C is the most effective across species. To 

calculate the chilling requirement, we therefore summed the days when daily temperature was 

comprised within this range: 

0

( ) 1 0 5
LFt

req t
t

CD t if T= ≤ ≤                                                   (3) 
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Where CDreq is chilling requirement, tLF is the day of leaf flushing and t0 is the starting date for 

chilling accumulation. As for heat accumulation, t0 was fixed on the onset date of the dormancy 

period, approximated as the date when the land surface froze or as January 1st. We also used 1st 

September in the previous year as the start day of chilling accumulation (following Chuine, 

2000), and similar results were found. We therefore only report the results obtained with the 

onset date of the dormancy period as the starting date for chilling accumulation. 

 

Data analysis 

For each phenological site, linear regression analyses of the dates of leaf flushing and heat 

requirement for leaf flushing, as well as chilling accumulation, precipitation sum and insolation 

sum during dormancy, against year, were performed for each species during the study period 

1980-2012. Histograms were made to show the frequency distribution of the regression 

coefficients for each of these variables, i.e. leaf flushing dates, heat requirement, chilling 

accumulation, and precipitation and insolation sum, across all species. The mean values of the 

regression coefficients were defined as the temporal trends of leaf flushing and heat requirement 

for each species as well as across all species. The difference in heat requirement and temporal 

trends of heat requirement among species were tested using independent t-test, and were 

quantified using linear regression.  

 

We applied a partial correlation analysis between heat requirements and chilling accumulation, 

precipitation and insolation sum. The heat requirement and the other climate variables were 

detrended before the partial correlation analysis was conducted. This method has been 
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successfully applied to remove covariate effects between multiple influential factors (Beer et al., 

2010, Fu et al., 2014a, Peng et al., 2013), i.e. chilling, precipitation and insolation in the present 

study.  

 

Results 

Temporal changes of heat requirement for leaf flushing 

During the study period 1980-2012, the date of leaf flushing advanced at almost 90% of the 

study sites (significantly at almost 50%). On average, the date of leaf flushing advanced by 13 

days across all observation sites (Fig. 2, grey histogram). An advancing trend was observed in all 

species, but this phenological shift was more pronounced in late than in early flushing species 

(Table 1).  

 

The heat requirement for leaf flushing was significantly different among the study species (df =1, 

12, F=740.0 P<0.001), with late flushing species exhibiting as expected the highest heat 

requirement. Assuming a linear relationship, the heat requirement for leaf flushing increased 

significantly (P=0.002), at a rate of 5 heat units per day delay in leaf flushing across the 13 study 

species (Fig. 3a). 

 

The heat requirement for leaf flushing increased during the study period 1980-2012 at almost all 

observation sites (97%; significantly at ~30%; Fig. 2, black histogram). With an average 

increment of 30 HU decade-1, the heat requirement increased by almost 50% (averaged across all 

species, Table 1). The temporal increase in heat requirement for leaf flushing was observed in all 

species, but was much larger for late than for early flushing species (Fig. 3b). For example, 
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compared to 1980, more than 120 extra heat units are now required for flushing of late species, 

such as Quercus robur and Fraxinus excelsior, whereas only ~30 extra heat units are required for 

the early species Syringa chinensis and Corylus avellana (Fig. 3b and Table 1). On average, 

across the 13 study species, each day delay in leaf flushing corresponds to an increase in the heat 

requirement of almost 3 heat units (Fig. 3b). 

 

Changes in climate and chilling requirement over 1980-2012 

Averaged across all our observation sites, the mean temperature during the dormancy period 

increased by 1.4°C over the period 1980–2012. While temperature increased at almost 90% of 

the study sites, this increase was significant at only 5% of the sites (at P<0.05; Fig. 4a), which 

was likely due to the non-linear warming pattern over the study period. In parallel with the 

warming trend, the sum of insolation substantially increased at more than 80% of the sites (Fig. 

4b), suggesting more occurrences of clear-sky conditions, with a mean increment of 516 W m-2 

over the period 1980-2012. In agreement with the increase of clear-sky conditions, precipitation 

sum declined during this period at 80 % of the sites, with a mean reduction of 75 mm (Fig. 4c). 

As expected in relation to the warming trend, chilling accumulation was reduced at almost all 

sites (90% of sites showed a trend, which was significant at p<0.05 in more than 30% of the sites, 

Fig. 4d), with the average reduction amounting to chilling days. 
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Correlations between heat requirement and other environmental factors 

The heat requirement for leaf flushing was negatively correlated with the chilling requirement at 

almost 90% of the study sites (mean partial correlation coefficient r= -0.30) and this correlation 

was significant at more than 30% of the sites (Fig. 5, black histogram). This negative correlation 

was found in all study species, but was much less pronounced in Acer platanoides and Syringa 

chinensis (Fig 6, left panels).  

 

Interestingly, the partial correlation analysis also revealed the predominance of a negative partial 

correlation between heat requirement and insolation sum during dormancy at more than 70% of 

the observation sites, with an average partial correlation coefficient of -0.18 (Fig 5, light grey 

histogram). This means that under similar chilling conditions and precipitation, years with more 

insolation tend to lead to earlier leaf flushing (in response to the reduced heat requirement). This 

negative correlation was found in 8 of the 13 species (Fig 6, right panels), while the opposite 

pattern was found in Acer platanoides (r = 0.19), Pyrus communis (r = 0.18), Robinia 

pseudoacacia (r = 0.19), Syringa chinensis (r = 0.08) and Tilia cordata (r = 0.12). This result 

suggests that the amount of insolation during dormancy may influence the heat requirement for 

leaf flushing, but that the impact is species-specific. 

 

In contrast to chilling and insolation sum, a predominantly positive partial correlation was found 

between heat requirement and precipitation sum during dormancy at around 70% of the 

observation sites (Fig 5, dark grey histogram, average partial correlation coefficient, r= 0.12). 

This partial correlation was, however, species-specific and the positive correlation was only 

found in seven species (Fig 6, middle panels). Two species even showed a rather strong negative 
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correlation between heat requirement and precipitation sum, i.e. Corylus avellana (r = -0.13) and 

Pyrus communis (r= -0.15). This predominantly positive correlation implies that under wetter 

conditions (=more cloudy) more heat is needed to trigger leaf flush under similar chilling 

accumulation. 

 

Discussion 

Heat requirement for leaf flushing increased over 1980-2012 

In the northern hemisphere, the last three decades were likely the warmest 30-year period during 

the previous millennia (IPCC, 2013). Averaged across all our study sites, the mean temperature 

during dormancy increased by 1.4℃ throughout the 1980-2012 period, which is twice the global 

warming rate over the same time period (i.e. 0.74℃ , IPCC 2013). Numerous studies have 

revealed that climate warming has substantially advanced the spring phenology of temperate 

plants (Chmielewski &  Rotzer, 2001, Fitter &  Fitter, 2002, Friedl et al., 2014, Fu et al., 2014b, 

Menzel et al., 2006, Parmesan &  Yohe, 2003, Piao et al., 2008). In line with these results, we 

found that the timing of leaf flushing across our 13 study species was advanced by 13 days over 

the 1980-2012 period. Interestingly, we found that the heat requirement for leaf flushing (across 

the study species) also increased by 50%, which substantially moderated the advancing trend of 

leaf flushing in response to warming and demonstrates that phenological responses to 

temperature increase are not necessarily linear (Fu et al., 2012b, Morin et al., 2010). 

 

The increasing heat requirement for leaf flushing was negatively correlated with chilling 

accumulation and with insolation sum, and positively correlated with precipitation sum. During 

the study period 1980-2012, we found decreased chilling accumulation and precipitation sum, 
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but increased insolation sum. The combination of these factors finally resulted in an increment of 

heat requirement for leaf flushing. Furthermore, as expected, we found species-specific 

differences in the heat requirement shifts with the ongoing warming trend, i.e. much larger heat 

requirement shifts in late- than in early flushing species, which is consistent with previous 

studies (Fu et al., 2013, Murray et al., 1989, Vitasse et al., 2009). The larger increment of heat 

requirement for late flushing species may mainly relate to the larger chilling requirement deficit 

(chilling requirement minus chilling accumulation) due to climate warming (reducing the 

chilling accumulation), since these later flushing species usually require more chilling to fully 

break bud dormancy, especially Fagus sylvatica (Harrington et al., 2010, Vitasse &  Basler, 

2013, Vitasse et al., 2009). 

 

Partial correlations between heat requirement and chilling, precipitation and insolation 

The heat requirement has been widely identified as the primary driver for leaf flushing in 

temperate woody species (Cannell &  Smith, 1983, Chuine, 2000, Friedl et al., 2014, Fu et al., 

2013, Hänninen, 1990). However, the causal mechanisms that determine the inter-annual 

variation in the heat requirement for leaf flushing remain poorly understood. Consistent with 

previous studies, we found that the heat requirement negatively correlates with chilling 

accumulation (Harrington et al., 2010, Murray et al., 1989, Vitasse &  Basler, 2013, Zhang et al., 

2004). However, after removing the variation induced by chilling accumulation in the partial 

correlation analysis, we also observed a predominantly positive partial correlation between heat 

requirement and precipitation, and a predominantly negative correlation with insolation, both 

summed during dormancy period. A similar correlation between heat requirement and 

precipitation was found in a remote sensing-based study focusing on the spatial correlations 
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across the Northern Hemisphere (Fu et al., 2014c). That spatial analysis also suggested a 

substantial role for winter precipitation in controlling spring phenological responses to global 

warming, but these spatial patterns need to hold temporally because space-for-time substitutions 

may be inappropriate (Jochner et al., 2013, Makela, 2013). Nonetheless, using an in situ dataset 

and temporal correlation analysis, this study supports the idea of a winter precipitation impact on 

phenology of deciduous woody species. Previous studies have reported that precipitation 

influences spring phenology in grassland ecosystems (Stewart &  Dwyer, 1994, Yuan et al., 

2007), but not noticeably in temperate tree species (Dose &  Menzel, 2004, Morin et al., 2010, 

Sherry et al., 2007). The latter was attributed to the deeper root system, which allows them to 

reach available water at depth (Sarmiento &  Monasterio, 1983). In contrast to these earlier 

studies, we do find that wetter years result in delayed spring phenology (associated with larger 

GDD requirement), although we could only detect it in the partial correlation analysis which 

removes the overriding temperature effects.  

 

The influence of precipitation on spring phenology is apparent, while it remains unclear how 

precipitation sum could directly affect spring phenology of deciduous woody species, but 

indirect effects can be proposed. We propose two mutually non-exclusive hypotheses to explain 

the positive correlation between heat requirement and precipitation sum during dormancy.  

 

First, less precipitation during plant dormancy may imply more clear days and nights, and 

thereby increase the daytime temperature but reduce the night time temperature (De Boeck et al., 

2010). The combination of increased day and reduced night temperatures may result in a stable 
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mean daily temperature. However, chilling accumulation may be more associated with the cooler 

night temperature than with mean daily temperature. Thus, the lower precipitation may actually 

indicate increased chilling accumulation that remained undetected in this analysis that used daily 

mean temperature. Increased chilling could explain the observed reduction of heat requirement at 

lower rainfall. Second, more clear days could increase both air and meristem temperatures, but 

the increment of meristem temperature could be much higher than air temperature as measured in 

standard weather stations, i.e. 2 m air-temperature recorded in shade conditions (Savvides et al., 

2014). These two temperatures are substantially different because under clear sky conditions 

buds are heating up at the canopy level, and the leaf flushing process may be more related to the 

meristem temperature within buds (Grace et al., 1989). Therefore, clear sky conditions may 

fullfill the meristem temperature-based heat requirement earlier than the air temperature-based 

heat requirement as calculated in this study. 

 

This would also explain the negative correlation between heat requirement and the insolation 

sum (Fig. 2b). However, how exactly the insolation sum may affect leaf flushing process remains 

poorly understood, although it has been widely reported as an important factor, at least in its 

daylength component (Basler &  Körner, 2012, Basler &  Körner, 2014, Caffarra &  Donnelly, 

2011, Körner &  Basler, 2010, Murray et al., 1989). Some studies have claimed that insolation 

sum could directly modulate the heat requirement, independent of chilling (Wareing 1953). Most 

studies, however, have suggested that the insolation sum effect is greater when there is a deficit 

in the amount of accumulated chilling (Basler &  Körner, 2014, Caffarra &  Donnelly, 2011, 

Falusi &  Calamassi, 1996), and may not play a significant role in case of sufficient chilling (Fu 

et al., 2012a, Kramer, 1994b, Laube et al., 2014). In addition, species-specific differences in the 
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insolation sum of spring leaf flushing phenology should be considered (Basler &  Körner, 2012, 

Basler &  Körner, 2014). In our study, we used insolation sum as an integrating value of day 

length and light intensity over the dormancy period, and found a predominantly negative, but 

species-specific, correlation between insolation sum and heat requirement. Thus, all else being 

equal, more insolation advances leaf flushing in most species. However, the underlying 

mechanism through which insolation sum affects spring leaf flushing remains poorly understood 

in temperate woody species and requires additional, well-designed manipulation experiments. 

 

Limitations and implications 

In this study, we estimated the heat requirement for leaf flushing using an in situ phenology 

dataset for northern-hemispheric temperate woody species, and investigated the role of 

environmental factors in the heat requirement by applying a partial correlation analysis to 

exclude the covariate effects between these factors. This approach helped us to better understand 

how different environmental factors influence the heat requirement for leaf flushing of different 

species. Nonetheless, caution should be taken. First, the parameter values of the sigmoid function 

for heat requirement were calculated following Hänninen (1990), based on Sarvas’ (Sarvas, 1972) 

experimental results on Finnish birch and poplar saplings. Similarly, accumulated chilling was 

calculated using arbitrary thresholds, albeit this too was based on empirical observations. These 

parameter values likely differ among species, climatic conditions, and even life stages 

(Luedeling, 2012, Vitasse, 2013). Evaluating the species-specific parameter values is beyond the 

scope of this study, but would likely reduce the uncertainty of both heat and chilling requirement 

estimates. A second limitation of this study is that we calculated the heat accumulation from the 
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average daily temperatures. However, within-day temperature variations have been found to 

influence heat accumulation (Chung et al., 2009). Furthermore, a recent study reported that the 

period preceding leaf flushing exerts a disproportional influence on leaf flushing (Friedl et al., 

2014). Therefore, a detailed study of which periods and times of day contribute most to heat 

accumulation could fine tune the interpretation of the phenology observations and reduce the 

uncertainty of our results. 

 

Nonetheless, the results of this study do have important implications for improving the 

understanding of spring leaf flushing. The present study suggests that besides the well-known 

effect of chilling, the heat requirement for leaf flushing is also influenced by precipitation and 

insolation sum during dormancy, either directly or indirectly. We speculate that the observed 

precipitation and insolation effects might be due to the inappropriate use of standard air 

temperature record in the heat requirement estimation, instead, meristem temperature is likely 

more directly related to the leaf flushing process. To date, the mechanisms through which 

chilling, precipitation and insolation affect the leaf flushing process remain unclear. 

Experimental efforts are needed to improve our understanding of the interactions between heat 

requirement and other environmental factors, as well as to improve our understanding of the 

different effects of air and meristem temperature on leaf flushing, and ultimately result in more 

accurate simulation of spring phenology and better understanding of the ecosystems response to 

future climate warming. 
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Supporting figure legends 

Figure S1. Histogram of the number of observed temporal trends for in situ based heat 

requirement for leaf flushing.  

Figure S2. Frequency distribution of partial correlation coefficients between heat requirement 

(calculated using equation 1) and chilling (dark green), insolation sum (red) and precipitation 

sum (green). 
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Table 1 Species specific heat requirement for leaf flushing and its temporal changes calculated 

using simple linear regression over the period 1980-2012. N indicates the number of observation 

sites, LU is the mean date of leaf flushing across all sites for each species; DOY is day of the 

year; HU is the heat unit, Ratio is the relative changes in heat requirement (%). 

 

Spieces 
N 

LU 
(DO
Y) 

LU 
changes 
(days) 

Heat 
requirement 

(HU) 

Heat requirement 
changes (HU) Rat

io 
Scientific name 

Common 
name 

Mean sd Mean sd 

Syringa chinensis Lilac 29 105 -3.2 98.3 70.6 25.7 30.2 26
% 

Alnus glutinosa European 
alder 

15
29 

107 -13.7 166.4 44.8 70.7 46.9 42
% 

Pyrus communis European 
Pear 

18 107 -13.1 191.9 59 88.1 49 46
% 

Sorbus aucuparia Rowan 11
15 

107 -5.5 169.9 44.9 59.3 42.5 35
% 

Aesculus 
hippocastanum 

Chestnut 23
48 

109 -12 166.3 45.9 77.2 45.3 46
% 

Betula pendula Silver birch 23
55 

109 -10.6 165.4 48.2 71.7 45.5 43
% 

Corylus avellana European 
filbert 

12
8 

112 -7.8 115.8 91.9 33.8 30.9 29
% 

Fagus sylvatica European 
beech 

19
65 

117 -13.5 203.4 56.3 102.3 48.7 50
% 

Tilia cordata Littleleaf 
linden 

11
5 

118 -10.9 177.7 90.5 70.3 37.2 40
% 

Acer platanoides Norway 
maple 

69 119 -8.6 146.7 111.9 55.9 42.6 38
% 

Quercus robur European 
oak 

20
45 

123 -16.3 246.4 48.8 127.3 56.6 52
% 

Robinia 
pseudoacacia 

Black 
locust 

21 124 -17.1 248.3 131.3 80.9 40.1 33
% 

Fraxinus excelsior Ash 15
69 

127 -16.6 271.6 53.2 131 57.2 48
% 

All species 
 

25
96 

115 -12.7 196.8 66.0 91.0 55.5 
46
% 
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Fig 1 Distributions of the in situ phenological sites. 

Fig 2 Histogram of the number of observed temporal trends (in days, slope of linear regression * years) 

for in situ based leaf flushing (gray histogram) and heat requirement for leaf flushing (HU, black 

histogram) across all species and sites during the study period 1980-2012. The percentages of the 

total number of positive (temperature and insolation) or negative (precipitation and chilling) 

correlations, as well as the percentages of statistically significant corrlations (in parentheses) are 

also provided. 

Fig 3. Species specific linear regression between heat requirement of leaf flushing and date of 

leaf flushing (a); and temporal change in the heat requirement and date of leaf flushing (b) over 

the study period 1980-2012. The symbols indicate mean values and the error bars one standard 

deviation. The solid lines indicate the simple linear regression. Ac indicates Acer platanoides; 

Ae: Aesculus hippocastanum; Al: Alnus glutinosa; Be: Betula pendula; Co: Corylus avellana; Fa: 

Fagus sylvatica; Fr: Fraxinus excelsior; Py:Pyrus commnuis; Qu: Quercus robur; Ro: Robinia 

pseudoacacia; So: Sorbus aucuparia; Sy: Syringa chinensis; Ti: Tilia cordata; All: all species. 

Fig 4 Histograms of temporal changes of temperature (a), insolation sum (b), precipitation sum 

(c) and chilling accumuation (d) during the dormancy period across all species and sites during 

the study period 1980-2012. The mean temporal changes and percentages of the total number of 

positive (temperature and insolation) or negative (precipitation and chilling) correlations, as well 

as the percentages of statistically significant correlations (in parentheses) are also provided. 

Fig 5 Frequency distribution of partial correlation coefficients between heat requirement for leaf 

flushing and chilling (black), after controlling for precipitation and insolation sum, and between 
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heat requirement and insolation sum (light grey), after controlling for chilling and precipitation 

sum, and between heat requirement and precipitation sum (dark grey), after controlling for 

chilling and insolation sum. Mean values of the partial correlation coefficients across all species 

and phenological sites, and percentages of the total number of positive (precipitation) or negative 

(chilling and insolation) correlations, as well as the percentages of statistically significant 

correlations (in parentheses) are also provided. 

Fig 6 Species specific mean partial correlation coefficient between heat requirement for leaf 

flushing and chilling (CD), precipitation sum (PRE) and insolation sum (ISO). Percentages of the 

total number of positive (precipitation) or negative (chilling and insolation) correlations are also 

provided.  
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