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ABSTRACT 24 

Detailed information about three-dimensional vegetation structure proves increasingly useful for 25 

studying species-habitat relationships in forest ecosystems. This particularly applies to species that 26 

make extensive use of the three-dimensional habitat space in forests, such as bats. Bats show 27 

considerable variation in flight morphology and echolocation traits that are shaped by habitat features, 28 

and are excellent model taxa for investigating relationships between vegetation structure and animal 29 

occurrence and movement. The aims of this study were (1) to investigate the relationship between the 30 

activity of bats and forest structure and (2) to compare the performance of airborne Light Detection 31 

and Ranging (LiDAR) and terrestrial field surveys for measuring habitat features in a representative 32 

sample of mixed and deciduous forests in the Swiss lowlands. Leaf-on and leaf-off LiDAR data were 33 

used separately, as well as in combination, to evaluate the relative strength of these datasets to 34 

describe 3D canopy architecture and vertical forest structure. Field measurements included structural 35 

variables such as leaf area index (LAI), vertical layering, snags, as well as shrub and ground 36 

vegetation cover. We recorded 145,433 echolocation call sequences from bats and assigned them into 37 

three echolocation guilds (short-, mid- and long-range echolocators; SRE, MRE, LRE, respectively) 38 

treating separately the dominant species (Pipistrellus pipistrellus; Pp). We used Generalized Mixed 39 

Effects Models (GLMMs) and applied an information-theoretic approach to assess relationships 40 

between guild-specific activity patterns of bats and forest structure in the forest interior, as well as in 41 

forest gaps. Standardized coefficients were used to evaluate variable effect sizes and relative 42 

importance. We found that guild-specific bat activity was clearly related to three-dimensional forest 43 

structure. The activity of SRE, MRE and Pp bats was negatively affected by foliage height diversity, 44 

indicating that a large scatter of vegetation elements along 3D forest profiles may restrict accessibility 45 

for manoeuvrable bats. Outer canopy surface ruggedness was significantly and positively related to 46 

the activity of MRE and LRE bats, as well as Pp, all of which may profit from increased canopy 47 

surface ruggedness for foraging (food abundance) and commuting (cover) purposes. The highest 48 

variable effect sizes were obtained by combining leaf-on and leaf-off LiDAR data. Leaf-off 49 

outperformed leaf-on data, particularly in describing foliage height diversity. LiDAR provided 50 

information about bat habitat structure in forests that is not readily available from field surveys. 51 



3 

 

LiDAR thus increases the scope of inference for future investigations of how species respond to 52 

vegetation structure, which can now readily and contiguously be assessed at relevant grain sizes and 53 

across large areas. 54 

 55 

KEYWORDS 56 

Airborne laser scanning; Bat guild; Chiroptera; Field survey; Habitat structure; Passive acoustic 57 

echolocation sampling.  58 
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1. INTRODUCTION 59 

In forest ecosystems, vegetation structure is an important biotic factor affecting the presence 60 

and abundance of animal species at local scales (Hunter 1999; Tews et al. 2004). Forest vegetation 61 

structure and its complexity influence species behaviour and diversity through several mechanisms, 62 

e.g. by affecting the availability and diversity of resources and niches, modifying microclimatic 63 

conditions, or by providing breeding and roosting sites, shelter or concealment from predators 64 

(MacArthur and MacArthur 1961; Melin et al. 2014; Suggitt et al. 2011). The fundamental 65 

importance of vegetation and habitat structure for the understanding and maintenance of biodiversity 66 

in forests is increasingly recognised (Gustafsson et al. 2012; Noss 1990, 1999), and recent advances in 67 

remote sensing may substantially improve our knowledge about relationships between species and 68 

habitat structure (Davies and Asner 2014; Simonson et al. 2014). 69 

While forest vegetation structure affects the habitat use of a wide range of taxa (e.g. 70 

Zellweger et al. 2015), it is particularly important for insectivorous bats, which use forest habitats for 71 

different purposes such as roosting (Ruczynski et al. 2010; Russo et al. 2004), foraging (Patriquin and 72 

Barclay 2003) and commuting (Schaub and Schnitzler 2007; Schnitzler et al. 2003). The influence of 73 

forest structure on bat activity and occupancy at the stand scale has been well studied in several 74 

regions (Adams et al. 2009; Dodd et al. 2012; Erickson and West 2003; Jung et al. 2012; Kalcounis et 75 

al. 1999; Müller et al. 2013; Obrist et al. 2011). These studies in general show that regardless of the 76 

stratum studied, an increase in vegetation density reduces bat activity (Adams et al. 2009; Brigham et 77 

al. 1997; Obrist et al. 2011). However, bats show different responses to vegetation structure 78 

depending on their foraging strategy, ecomorphological traits and echolocation call design (Aldridge 79 

and Rautenbach 1987; Norberg and Rayner 1987; Schnitzler and Kalko 2001). For example, bat 80 

species with low flight manoeuvrability and long echolocation range (e.g. Nyctalus spp.) prefer 81 

foraging in the open, whereas species with high flight manoeuvrability and short echolocation range 82 

(e.g. Myotis spp.) make extensive use of the vertical complexity of a forest (Adams et al. 2009; 83 

Kalcounis et al. 1999; Müller et al. 2013). These distinct relationships with structural attributes 84 

suggest that accurate information of the three-dimensional forest structure is important for better 85 

understanding habitat use by bats. 86 
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Until the advent of remote sensing technologies, such as Light Detection and Ranging 87 

(LiDAR), data collection on stand-scale forest structure was largely restricted to observational field 88 

surveys. Apart from being laborious, the availability of field survey data is limited to sample plots, 89 

and area-wide evaluations of structural attributes across a range of grain sizes and spatial extents are 90 

thus not feasible. Furthermore, field data to study species-habitat structure relationships and to build 91 

habitat models are usually collected across relatively small areas. This constrains the scope of 92 

inference from such data and poses limitations for many applications in ecology and conservation, 93 

which would profit from contiguous and detailed data across a range of scales (e.g. Lindenmayer et al. 94 

2008; Wiens 1989). Moreover, field observations are limited in describing important habitat 95 

properties related to the canopy. Fine-scale aspects and variation in canopy architecture and 96 

associated vegetation density and surface area, for example, influence the abundance and diversity of 97 

spiders and other arthropods (Halaj et al. 2000; Müller et al. 2014). However, such features are 98 

difficult to describe in the field and may remain largely concealed from an observer on the ground. 99 

Methods that provide objective tools to contiguously depict the entire 3D habitat space in forests and 100 

deliver ecologically interpretable variables are thus required to fully appreciate the ecological 101 

relevance of forest structure. By providing detailed and contiguous information on habitat structure 102 

across large areas, airborne LiDAR has considerably advanced our abilities to meet these 103 

requirements. Thus, novel opportunities to study species-habitat structure relationships across a range 104 

of scales have emerged and applications of LiDAR are rapidly increasing in number (Davies and 105 

Asner 2014; Simonson et al. 2014; Vierling et al. 2008). Based on structural attributes such as vertical 106 

complexity, canopy height and heterogeneity, LiDAR has frequently been applied to study bird 107 

diversity and habitat use in forests (Bradbury et al. 2005; Clawges et al. 2008; Goetz et al. 2007; 108 

Hinsley et al. 2006; Lesak et al. 2011; Zellweger et al. 2013). The diversity and activity of other 109 

taxonomic groups, such as arthropods, is related to LiDAR-derived canopy architecture and indicators 110 

of microclimatic conditions in the lower stratum of forests (Müller et al. 2014; Müller and Brandl 111 

2009; Vierling et al. 2011). Despite the strong dependence of bats on forests, studies using airborne 112 

LiDAR to investigate how bat behaviour is related to forest structure, however, are still relatively rare 113 

(Davies and Asner 2014). Jung et al. (2012) found a strong relationship between bat occurrence and 114 
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activity and structural heterogeneity related to canopy and edge characteristics in different managed 115 

forest types. Fabianek et al. (2015) found that a high proportion of LiDAR-derived canopy gaps 116 

within mixed and coniferous forests positively affected roost selection by male Myotis bats in Canada, 117 

and ground-based LiDAR has provided insights into the flight behaviour of big brown bats (Eptesicus 118 

fuscus) in a deciduous forest (Yang et al. 2013). Furthermore, the potential of LiDAR to complement 119 

field surveys by delivering unique information on structural habitat attributes, as well as potential 120 

benefits from using a combination of leaf-on and leaf-off LiDAR data to measure habitat structure 121 

remain to be explored. Given the increased canopy penetration of laser pulses during leaf-off 122 

conditions, we expect it to carry essential information about subcanopy vegetation elements 123 

potentially affecting the manoeuvrability of bats. Outer canopy and edge characteristics, however, 124 

may be more accurately represented by leaf-on data, hence a combination of leaf-on and leaf-off data 125 

provides ecologically valuable information in deciduous and mixed forests, such as the ones studied 126 

here. 127 

The aim of this study was to test the assumption that forest vegetation structure strongly 128 

affects bat activity and that this relationship depends on species’ eco-morphological traits such as 129 

flight manoeuvrability and echolocation call design. Such effects should thus be specific for guilds 130 

consisting of short- (SRE), mid- (MRE) and long- (LRE) range echolocators. We used a set of 131 

variables representing structural forest attributes from both field and LiDAR surveys, and investigated 132 

their effect on guild-specific activity patterns in mixed and deciduous forests. The main objectives 133 

were (i) to determine key structural variables that influence bat activity at the guild level and (ii) to 134 

compare the performance of terrestrial field and LiDAR surveys of forest structure and (iii) to 135 

investigate the relative strength of leaf-on and leaf-off LiDAR, as well as a combination thereof for 136 

providing unique information on forest structural attributes affecting bat habitat use.  137 
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2. MATERIAL AND METHODS 138 

2.1. Study area 139 

The study area was situated in Central Europe in the northern part of Switzerland, at the 140 

interface between the lowlands and the Jura Mountains (Canton of Aargau: 47°14’–47°62’N, 7°71’–141 

8°46’E, 260-910 m a.s.l.). The average annual temperature and rainfall in this region are 9.7°C and 142 

1076 mm, respectively (www.meteosuisse.admin.ch). The landscape consists of a mosaic of 143 

fragmented habitats such as forests (37%), agricultural land (45%) and urban areas (15%). The most 144 

abundant forest tree species are Fagus sylvatica (32%), Picea abies (26%), Abies alba (14%), 145 

Quercus spp. (7%) and Fraxinus excelsior (7%). 146 

We applied a stratified-random sampling design to select eight 1-km2 cells that were 147 

characterised by more than 50% of temperate forest cover (Figure 1). Each cell contained four 148 

randomly selected forest plots. Forest plots included both forest interior habitats and forest gaps, and 149 

were located within deciduous (covered with more than 66% deciduous trees) or mixed (covered with 150 

between 33 and 66% deciduous trees) forest stands. We defined the forest gap as an open area within 151 

a forest where the canopy cover was considerably lower than in the surrounding forest areas (Runkle 152 

1992). We identified forest gaps during field investigations; the minimum size of a forest gap was 400 153 

m2 (mean 1,318 m2). The distances between the recording sites in the forest gap and the forest interior 154 

ranged from 46 to 140 m (mean 81 m). To avoid biases from potential edge effects, the plots were 155 

located at least 50 m away from outer forest edges, and at least 20 m away from forest roads (for 156 

details, see Froidevaux et al. 2014). 157 

 158 

2.2. Bat echolocation call recording and identification 159 

Sampling took place between 4 June and 29 August 2013 (71 full nights) when weather 160 

conditions were optimal, i.e. during dry nights with a minimum temperature ≥ 7 °C, conditions that 161 

are suitable for insect flight and consequently for activity in aerial-feeding bats. We digitally recorded 162 

bat echolocation calls at 312.5 kHz sampling rate and 16 bits depth with 12 ultrasound detectors 163 

(BATLOGGER; Elekon AG, Lucerne, Switzerland), each protected by a Strongbox (Elekon AG, 164 

Lucerne, Switzerland). Microphones were water resistant, omnidirectional and sensitive between 10 165 
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and 150 kHz (± 5 dB). We programmed detectors to automatically record bats throughout the night 166 

(from sunset to sunrise, 21:30 h – 05:30 h). 167 

We allocated three detectors per forest plot, one located in the centre of the forest gap 168 

mounted on a pole at a height of 1.35 m, and two in the forest interior. There, we placed one detector 169 

on a pole at 1.35 m height, and another detector up in the canopy at a mean height of 18.9 m, using a 170 

slingshot, rope and pulley system. We developed this design to better account for the vertical habitat 171 

use of bats in forests (Adams et al. 2009; Kalcounis et al. 1999; Müller et al. 2013). In total, each 172 

forest plot was sampled between 6 and 12 nights throughout the field season. This extensive sampling 173 

effort considerably increased the accuracy and completeness of data on bat activity (Froidevaux et al. 174 

2014). 175 

We identified bat echolocation calls using BATSCOPE, a semi-automatic bat identification 176 

software package (Boesch and Obrist 2013). The process consisted of extracting 23 relevant numeric 177 

variables from call spectrograms (0.31 kHz x 0.16 ms resolution) and comparing these with variable 178 

values from 19,636 reference calls from 27 European species (Obrist et al. 2004). Based on three 179 

classifiers (Support Vector Machine, K Nearest Neighbours, Quadratic Discriminant Analysis), calls 180 

were then classified into species with an average correct classification rate of 95.7% when all three 181 

classifiers agreed (i.e. 76.4% of the cases; predictions obtained from 10-fold cross-validation; see 182 

Boesch and Obrist 2013). We then verified bat call sequences (i.e. series of echolocation calls) to 183 

taxonomic entity using the semi-automatic processes provided by BATSCOPE, which implements 184 

multiple filter combinations to reach the taxonomic level most appropriate for identification (for 185 

details, see Froidevaux et al. 2014). According to their affiliation (i.e. species, complex of species, 186 

genus, complex of genera), we grouped bats into different guilds reflecting their echolocation range 187 

(Aldridge and Rautenbach 1987; Schnitzler and Kalko 2001; Schnitzler et al. 2003), namely short-188 

range echolocators (SRE; Myotis spp. and Plecotus spp.), mid-range echolocators (MRE; Pipistrellus 189 

spp. and Hypsugo savii) and long-range echolocators (LRE; Eptesicus spp., Nyctalus spp. and 190 

Vespertilio murinus) (see Table 1 in Frey-Ehrenbold et al. 2013 for more details). As Pipistrellus 191 

pipistrellus largely dominated the MRE guild (84.1 % of sequences), we excluded this species from 192 

the guild and analysed its activity pattern separately. 193 



9 

 

 194 

2.3. Assessment of forest structure 195 

2.3.1. Field survey 196 

We conducted field measurements on forest structure in July and August 2013, when trees 197 

were in full leaf. To collect data in the forest interior, we defined a stand around each forest ground 198 

site where the bat detector was placed, measuring an area of 30 x 30 m, by using poles and a laser 199 

distance meter (LEICA, Disto D8) and aligned it parallel to the terrain’s slope. Each stand was then 200 

divided into four quarters (15 x 15 m) to optimise precision during data collection (e.g. estimation of 201 

shrub cover). Similarly, forest gaps were delimited by the tree lines and divided in four equal parts 202 

with a compass. Following the methodology of the Swiss National Forest Inventory (Keller 2011), we 203 

surveyed seven forest variables for the forest interior and five for the forest gap, each representing the 204 

local vegetation structure (Table 1). To minimize any observer bias, the same person (J.S.P. 205 

Froidevaux) collected all the data.  206 

The degree of understory vegetation density was measured from the centre of the forest stand 207 

with a profile board (Nudds 1977), which was placed subsequently in the four corners of the stand. 208 

The leaf area index (LAI) was used as a surrogate of the combined cover of both the canopy and the 209 

subcanopy strata. We calculated the LAI with the program Hemisfer 1.5 (Schleppi et al. 2007; 210 

Thimonier et al. 2010) from five hemispherical photographs that were taken in the centre of each 15 x 211 

15 m quadrat of the forest stand. In forest gaps, the structure of the edge was classified as either open 212 

or closed (Hamberg et al. 2009), based on visual inspection, and the gap size was calculated using 213 

ArcGIS Desktop v10.  214 

2.3.2. LiDAR metrics 215 

We used discrete multiple return airborne LiDAR data to compute a number of metrics 216 

describing forest structural properties that are ecologically relevant to bats (Table 1). Milan 217 

Geoservices GmbH acquired raw data for the study area twice in 2014, once during leaf-on and once 218 

during leaf-off conditions. The data were acquired using a RIEGL LMS-Q680i airborne laser scanner 219 

flown at an average altitude of 700 m a.s.l. and average flight speed of 110 km h-1, with a beam 220 

divergence of 0.5 mrad. The overlapping flight strips and a pulse repetition frequency of 300 kHz led 221 
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to an average pulse density in each dataset of 7.5 pulses/m2, resulting in an average echo density of 22 222 

pts/m2 across all plots. Comparison with 30 reference points from terrestrial measurements revealed 223 

an average vertical accuracy of 3.1 cm.  224 

We merged the data from both flight missions and used a suite of LAStools algorithms 225 

(Isenburg 2013) involving point classification and triangulation to calculate a terrain model, which 226 

was then used to calculate the terrain-corrected (normalized) vegetation heights. We used the 227 

normalized point clouds of the leaf-on and leaf-off data sets separately, as well as the combination 228 

thereof to investigate the relative strengths of these different LiDAR datasets and whether they 229 

provide unique and complimentary structural information compared to field vegetation surveys. For 230 

each of the three LiDAR datasets we computed nine variables describing forest vegetation structure 231 

with potential relevance to bat activity, applying a height threshold of 1.3 m to identify vegetation 232 

points (Næsset 2002) (Table 1). Canopy height was computed as follows: we gridded the vegetation 233 

heights using a cell (pixel) size of 0.5 m, retained the highest available point per cell and assigned its 234 

height to the respective cell, thus representing the upper canopy surface. None of the point clouds 235 

contained returns from infrastructure such as power lines or buildings. Canopy ruggedness was 236 

calculated using the terrain ruggedness index (TRI), algorithm (Wilson et al. 2007). Canopy 237 

ruggedness measures the local variation in canopy height by comparing a central pixel with its 238 

neighbours, taking the absolute values of the differences, and averaging the results (Wilson et al. 239 

2007). Variation in outer canopy height and associated edge characteristics may be important for bats 240 

because it affects their foraging and commuting behaviour. We derived this variable for both the 241 

forest interior and the gap, and used the same nomenclature (i.e. canopy ruggedness) for the two. 242 

However, we are aware of the fact that in forest gaps, this variable represents the ruggedness of the 243 

upper vegetation surface, which may not always be referred to as canopy. To describe the degree of 244 

scatter of vegetation elements along the vertical forest profile, we adopted the foliage height diversity 245 

(FHD) concept proposed by MacArthur and MacArthur (1961). We defined FHD as 246 

FHD = H’ = - ∑pi ln pi, 247 
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where H’ is the Shannon–Wiener information index and pi is the proportion of vegetation points in the 248 

ith height interval. We calculated four equal height intervals (i.e. horizontal bands) delineated by the 249 

quartile heights of the vegetation point cloud (cf. Clawges et al. 2008).  250 

Each variable was calculated for the field plot dimensions, and spatial co-registration was 251 

undertaken based on the averaged coordinates from at least three GPS recordings, using a GARMIN 252 

GPS device (GPSMAP 62st). The accuracy of the GPS localization varied in average 2.7 m in the 253 

gaps and 3.7 m in the forest interior. Given that the distance at which a bat can be detected is species 254 

specific, typically in the range of 10 to 50 m, these GPS values were sufficiently accurate to 255 

subsequently describe the habitat structure relevant to bats. 256 

 257 

2.4. Statistical analyses 258 

Bat guild activity per night was measured by counting the number of 5 min intervals where 259 

bat sequences of a given taxon were recorded. This time period limits possible bias arising from the 260 

fact that single bats may forage in the recording range of a microphone for extended times. Acoustic 261 

data from the forest ground sites were previously pooled with those from the corresponding canopy 262 

sites to get a single activity index for the forest interior. We applied the Mantel test for testing the 263 

spatial independence of the total bat activity data by using two distance matrices, namely (i) the 264 

spatial distance between the sampling sites and (ii) the distance between the bat activity indexes 265 

measured at the given sites. No spatial autocorrelation was found (Mantel statistics: |r| = 0.04, 266 

empirical p.value = 0.17, with 999 permutations). To assess the relationship between guild-specific 267 

bat activity (dependent variable) and vegetation structure (independent variable), we used generalized 268 

linear mixed models (GLMMs) (function glmer, R package lme4) with the appropriate distribution: 269 

Poisson for LRE guild and negative binomial for SRE and MRE guilds, as well as for P. pipistrellus, 270 

due to overdispersion in the data. Mean night temperature and forest variables were considered as 271 

fixed effects whereas the number of location-replicates and nights were implemented as random 272 

effects to avoid pseudo-replication. Before integrating the forest variables into the models, we 273 

investigated any correlations among variables using Spearman’s correlation test. Each variable was 274 

standardized to obtain the same unit measures and enable a comparison of variable importance based 275 
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on the effect sizes in the GLMMs. When correlations were found (|r|>0.7, Table S1), we kept only the 276 

variable with the highest ecological significance to explain bat activity. Moreover, if correlated 277 

variables had equal ecological importance, we tested them independently within our models to select 278 

the variable with the most explanatory power. Finally, to identify the most parsimonious model we 279 

applied an information-theoretic approach using Akaike’s Information Criterion corrected for small 280 

sample sizes (AICc), and chose the model with the fewest parameters when models were considered 281 

equivalent (∆AICc < 2) (Burnham and Anderson 2002). Statistical analyses were performed using R 282 

3.0.1 (R Core Team 2013).    283 
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3. RESULTS 284 

A total of 145,433 bat sequences containing 2,064,188 bat echolocation calls were recorded 285 

over 71 nights, including 113,340 sequences belonging to P. pipistrellus. 112,822 sequences (99.6%) 286 

could be affiliated to a guild. We assigned 68% of them to the MRE guild, 30% to the SRE guild, and 287 

2% to the LRE guild. While nocturnal activity (i.e., number of 5 min intervals where sequences of a 288 

given taxon were recorded) of SRE was higher in the forest interior than in forest gaps, the opposite 289 

was true for MRE and LRE, in spite of the fact that we sampled both at ground and canopy level in 290 

the forest interior (Table 2). Only 5-10% of all echolocation call sequences recorded contained 291 

terminal buzzes indicative of feeding behaviour (Griffin et al. 1960). Thus, we were unable to 292 

separate feeding behaviour and commuting behaviour in our analysis. 293 

The effect of vegetation structure on bat activity was guild-specific, as revealed by the 294 

different variables and effect sizes in the GLMMs (Table 3). In the forest interior, the activity of SRE 295 

increased with decreasing FHD and density of trees. However, with the leaf-off and combined LiDAR 296 

datasets we found a comparably larger negative effect of FHD for MRE and P. pipistrellus, both of 297 

which responded positively to increasing canopy ruggedness and negatively to the LAI. LRE activity 298 

increased with increasing mean canopy height and was positively associated with increasing 299 

temperature.  300 

In gaps, the activity of SRE increased with increasing ground vegetation cover, whereas MRE 301 

and LRE activity increased with increasing mean vegetation height and canopy ruggedness, 302 

respectively. P. pipistrellus showed the same trend as the MRE guild.  303 

Significant effects of forest structure on bat activity were revealed by four LiDAR variables 304 

(i.e. FHD, canopy ruggedness, mean canopy height, and mean vegetation height), which were more 305 

often retained than the three significant variables measured in the field (i.e. density of trees, LAI and 306 

ground vegetation cover) were retained. The combined leaf-on and leaf-off dataset performed best in 307 

describing structural variables related to bat activity. This was particularly evident for FHD and 308 

canopy ruggedness, where the variable effect sizes were generally larger compared to the results of 309 

either leaf-on or leaf-off data. Leaf-off data represented the effect of FHD on SRE, MRE and P. 310 

pipistrellus activity better than leaf-on data. Although canopy ruggedness from leaf-on data was not 311 
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retained for MRE and P. pipistrellus (Table 3), canopy ruggedness frequently occurred in the top 312 

models in the leaf-on model selection for MRE and P. pipistrellus (Table S2).  313 
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4. DISCUSSION 314 

4.1. Vegetation structure affects bat habitat use 315 

Our results indicate a strong effect of the three-dimensional structure of forests on bat activity 316 

at the stand scale, and that this effect depends on guild-specific traits. Bat habitat use, in addition to 317 

foraging strategy, is mainly constrained by their echolocation call design and ecomorphological 318 

characteristics (Schnitzler and Kalko 2001; Schnitzler et al. 2003). The activity of SRE, for example, 319 

was higher in the forest interior, suggesting that bats that emit short-range echolocation calls and 320 

manoeuvre well with their low wing loadings, may be better adapted to forage in the forest interior 321 

than bats with a high wing loading and corresponding high flight speed, low manoeuvrability and 322 

long-range echolocation. While the short-range echolocation calls allows the members of the SRE 323 

guild to obtain a better perception of the near surroundings and to better deal with background echoes, 324 

higher manoeuvrability helps them avoid collisions with obstacles in their flight path within 325 

vegetation. This finding is consistent with previous studies that reported guild-specific responses to 326 

vegetation structure (Jung et al. 2012) and confirmed that bats respond to habitat structure in 327 

functionally different ways.  328 

Bat detection probability may be affected by vegetation density and call frequency because 329 

higher call frequencies travel shorter distances than lower ones due to greater atmospheric attenuation. 330 

This could have biased our interpretations of the relationship between bat activity and forest structural 331 

components. However, Yates and Muzika (2006) and Bender et al. (2015) showed that the probability 332 

of bat detection in forests was not related to vegetation density, although bat occupancy was. 333 

Moreover, Obrist et al. (2011) showed experimentally that foliage density only weakly (≈5%) 334 

attenuates calls at frequencies between 20-60 kHz, and the bat species we studied are not known to 335 

change call frequency substantially in relation to the habitat they preferably use. Of more concern is 336 

the likelihood that bats may reduce call intensity when flying in dense vegetation, making them less 337 

likely to be detected. Indeed, bats are likely to reduce call intensity in dense foliage to avoid acoustic 338 

masking by clutter echoes (Brinklov et al. 2010). Although we acknowledge that variation in habitat-339 

dependent call intensity may bias our results to some extent, we are encouraged that the trends we 340 

document fit with expectations from flight morphology. For example species that use short-range 341 
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echolocation have wing shapes adapted for flying in cluttered situations and show higher levels of 342 

activity in the forest interior, even though their call intensity may be lower there. Furthermore, any 343 

decreases in bat detection probabilities caused by decreases in call intensity in dense vegetation may 344 

be compensated by increased pulse repetition rates as bats may need more details of the acoustic 345 

scene. Finally, it is also likely that the density of vegetation may affect the quality of the echolocation 346 

calls recorded and thus their identification (O’Keefe et al. 2014), which might be more of an issue 347 

when working at the species level. In our study, while bat identification was challenging (e.g. 348 

similarity of calls between species, poor-quality calls) the clustering of species into guilds allowed us 349 

to make a nearly complete use of our dataset: we were able to affiliate 99.6% of the bat sequences 350 

recorded into guilds. Thus, we assume that the density of vegetation played only a small role in 351 

affecting bat detectability relative to estimates of occupancy. 352 

 353 

4.1.1. Bat activity in the forest interior 354 

Our findings highlight an important variable, foliage height diversity (FHD), for SRE, MRE 355 

and P. pipistrellus species. Since FHD represents the degree of scatter of vegetation heights along the 356 

vertical forest profile, higher FHD values may negatively affect bat accessibility and manoeuvrability. 357 

Thus, the negative correlations and relatively high effect sizes of FHD on the activity of MRE as well 358 

as P. pipistrellus were expected. These findings corroborate several studies that show that, edge 359 

specialist bat species avoid forests with highly scattered vertical vegetation profiles when foraging or 360 

commuting (Adams et al. 2009; Brigham et al. 1997; Erickson and West 2003; Obrist et al. 2011). 361 

Similarly, increased LAI, representing more closed forests, also affects activity of both these groups 362 

negatively. However, while we hypothesized a positive relationship between FHD and activity for the 363 

SRE guild (Norberg and Rayner 1987; Schnitzler and Kalko 2001), we found a negative relationship, 364 

though with a relatively low effect size. This suggests that even bats with high flight manoeuvrability 365 

concentrate their activity in vertically less complex forests. The most plausible reason for this finding 366 

arises from the fact that all forests in the study area are managed according to principles of 367 

sustainable, multi-purpose forestry (excluding plantations and monocultures) and thus, are strongly 368 

limited in the gradient of observed FHD. Although we randomly selected the sampling sites, we 369 
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obtained a small gradient from moderate to high FHD values ranging from 0.84 to 1.28 (mean: 1.08; 370 

SD: 0.10). Therefore bats with high manoeuvrability and short echolocation range belonging to the 371 

SRE guild seem to show a preference for a scattered profile until a certain threshold, after which the 372 

vegetation is too dense, restricting accessibility, manoeuvrability and, ultimately, their foraging 373 

efficiency (Rainho et al. 2010; Schnitzler and Kalko 2001). There is now widespread support for this 374 

hypothesis, regardless of the forest type investigated (Adams et al. 2009; Brigham et al. 1997; Müller 375 

et al. 2013). FHD has originally been proposed to explain bird diversity and positive correlations are 376 

usually found (Clawges et al. 2008; MacArthur and MacArthur 1961), implying that higher FHD 377 

leads to greater niche diversity along the vertical gradient of the forest. Even though we are aware that 378 

we used an adjusted version of the FHD concept and that we investigated bat activity and not bat 379 

diversity, our results point out that the same forest structural attribute may have very different 380 

ecological consequences for different taxa that utilise the same three-dimensional habitat space.  381 

We further found canopy ruggedness to be important for the activity of bats from the MRE 382 

guild, as well as for P. pipistrellus. As suggested in other studies (Jung et al. 2012; Kalcounis et al. 383 

1999; Müller et al. 2013), bats may use the external canopy surface as a surrogate of edges when 384 

commuting and foraging. Thus, for edge specialist bats such as Pipistrellus spp., higher heterogeneity 385 

of the canopy surface provides greater benefits such as protection from predators, shelter from wind 386 

(Verboom and Spoelstra 1999), and acoustic landmarks for commuting (Schaub and Schnitzler 2007). 387 

Moreover, an increased canopy surface ruggedness may produce particular microclimatic conditions 388 

favourable to a higher abundance of insects (Ulyshen 2011), thus indirectly affecting bat activity. 389 

The height of the canopy had an effect on the activity of the LRE guild, as suggested by Dodd 390 

et al. (2012) for lasiurine bats. However, given that Eptesicus spp., Nyctalus spp. and Vespertilio 391 

murinus, which comprise the LRE guild, are known to forage or commute over the forests at high 392 

altitudes or in open spaces (Vaughan et al. 1997), detectors placed in high canopies may be more 393 

likely to record their echolocation calls (Müller et al. 2013), potentially introducing a recording bias. 394 

Open space foragers are also more exposed to lower temperatures (e.g. dropping quicker during the 395 

night in the open space than at edges or in the forest interior), which might explain their activity 396 

showing stronger temperature dependence than e.g. the SRE-guild. 397 
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4.1.2. Bat activity in forest gaps 398 

Vegetation height and canopy ruggedness were the main variables influencing LRE, MRE 399 

and P. pipistrellus in gaps. Only the SRE guild was influenced by the ground vegetation cover, 400 

probably reflecting the preferences of most Myotis species (except Myotis myotis; Arlettaz 1996; 401 

Audet 1990) to forage above vegetated ground, e.g. when gleaning prey from leaves. As for the forest 402 

interior, MRE and P. pipistrellus showed the same trend: in forest gaps these edge specialist bats 403 

seem to prefer areas with higher vegetation heights. Given that we deliberately excluded heavily 404 

overgrown gaps in our design to maximise detection of bats and to record high quality bat 405 

echolocation calls for optimising bat acoustic identification (Obrist et al. 2004), the vegetation height 406 

may be interpreted in terms of different early stages of forest regeneration. In a recent study, Müller et 407 

al. (2012) demonstrated that the abundance of insect prey eaten by bats is vegetation-dependent, with 408 

higher prey abundance in dense vegetation. This implies that gaps with rapid vegetation succession 409 

may harbour more insects that thrive on the young plants or leaves, thus attracting more bats such as 410 

LRE, MRE and P. pipistrellus, which forage in these open forest habitats. Higher insect abundance 411 

may also result from favourable microclimatic conditions and heterogeneity of the vegetation 412 

structure and composition, which provides a great diversity of microhabitats (Bouget and Duelli 413 

2004). The ruggedness of the external vegetation surface is a good proxy for the heterogeneity of the 414 

vegetation in the gaps and is likely associated with the availability and abundance of food.  415 

 416 

4.2. LiDAR provides unique habitat information 417 

Our results suggest that forest structure derived from LiDAR data provides ecological 418 

information that is complementary if not superior to field vegetation survey data. Although 419 

complementary effects of LiDAR-derived habitat variables in combination with field surveys are 420 

documented for measuring forest bird habitats (Zellweger et al. 2014), the large difference in 421 

ecological relevance we found explaining bat activity was surprising. A potential reason for this may 422 

be related to how habitat is measured and how bats perceive and use forest habitats. Vegetation 423 

surveys in the field normally involve visual inspection from an observer close to the ground. Thus, 424 

several important aspects of the three-dimensional habitat space, such as upper canopy characteristics, 425 
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may remain concealed due to restricted visibility. LiDAR overcomes this restriction by measuring 426 

forests from a “top-down” perspective, which in many cases is more similar to how bats perceive and 427 

use forest habitats compared to the “bottom-up” view in field surveys. Thus, the high level of detail in 428 

LiDAR data representing canopy characteristics provides novel opportunities to study species-habitat 429 

relationships that were previously not readily available. Furthermore, LiDAR data gathered by the 430 

same instrumentation and survey configuration will have less of an “observer bias” that is commonly 431 

present in field data surveys where multiple people are involved. However, if LiDAR data were 432 

acquired with different settings, the accuracy and precision of the derived variables need to be tested 433 

and compared for the different settings. 434 

Compared with datasets from either leaf-on or leaf-off LiDAR surveys, it appears that the 435 

combined leaf-on and leaf-off dataset carried more ecologically relevant information about canopy 436 

architecture and vertical forest structure for studying the activity of bats in mainly deciduous forests. 437 

This was particularly apparent for canopy ruggedness and FHD, and their relatively large effects on 438 

the activity of MRE and P. pipistrellus. Although canopy ruggedness frequently occurred in the top 439 

models in the leaf-on model selection (Table S2), it was surprising that its effect was a lot stronger 440 

when derived from combined leaf-on and leaf-off data. While such effects remain to be explored, they 441 

are potentially influenced by the abundance of coniferous trees and the fact that leaf-off data may 442 

contribute essential information about structural elements of the canopy other than foliage, such as 443 

twigs or branches. FHD was best represented in the combined dataset as well, however, its effects on 444 

bat activity were also evident when using the leaf-off data only. This suggests that leaf-off LiDAR 445 

may be superior to leaf-on LiDAR in describing habitat attributes related to the vertical structure in 446 

deciduous forests. As shown by Wasser et al. (2013), this is most likely related to the increased laser 447 

pulse penetration through the canopy during leaf-off conditions, which enhances the detection of 448 

subcanopy vegetation elements affecting the manoeuvrability of bats. As illustrated in Figure 2, the 449 

increased canopy penetration during leaf-off conditions leads to an increased detection of vegetation 450 

elements in the lowest forest strata, which includes tree regeneration and shrubs, both being essential 451 

elements of vertical forest structure. The quality of LiDAR data for ecological applications in 452 

temperate regions thus depends on the time of the year they were acquired. Although we show that 453 
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combined leaf-on and leaf-off data reveals the greatest potential for LiDAR applications in bat 454 

ecology, our results support the recommendation that with limited budgets, acquiring leaf-off data is 455 

preferable to leaf-on data.  456 
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5. CONCLUSIONS AND OUTLOOK 457 

Bat activity is strongly influenced by forest vegetation structure and is also modulated by 458 

species-specific echolocation and flight characteristics. Although our correlative framework hampers 459 

conclusions about the effective drivers of the guild-specific activity patterns, our results support the 460 

assumption that factors related to canopy architecture and vertical forest structure have strong effects 461 

on bat habitat use. These effects can either be direct, e.g. via decreasing manoeuvrability in forest 462 

stands with highly scattered vegetation along the vertical profile, or indirect, e.g. via increased 463 

resource abundance and diversity in stands with a complex canopy architecture. LiDAR remote 464 

sensing provides information on forest structure that is difficult or impossible to collect in the field, 465 

especially across large areas. LiDAR thus substantially improves our abilities to reliably map the 466 

entire 3D habitat space in forests at a relevant grain size, to the benefit of future studies investigating 467 

the ecological relevance of canopy structure. Combined leaf-on and leaf-off data holds more 468 

ecologically relevant structural information than the two individual datasets, and leaf-off appears to be 469 

the preferable choice over leaf-on for limited budgets. With the recent development of new 470 

technologies and techniques such as miniature GPS devices and flight path tracking (Matsuo et al. 471 

2014), extended use of LiDAR technology may push forward frontiers in the field of animal 472 

movement ecology, especially in structurally complex habitats such as forests. 473 

  474 
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TABLES 683 

Table 1. Variables describing the vegetation structure of the sites where we investigated bat activity in the forest interior (FI) and in forest gaps (gap). 684 

Variable Short description Unit Source Plot type 

Vegetation layers Number of vegetation layers according to Keller (2011) number Field FI 

Snags Number of standing dead trees with diameter at breast height > 25 cm  number Field FI and gap 

Density of trees Number of trees higher than 5 m per hectare trees/ha Field FI 

LAI Leaf area index estimated from hemispherical photographs using Hemisfer 1.5 (Schleppi 

et al. 2007, Thimonier et al. 2010) 

index Field FI 

Understory vegetation clutter  Vegetation clutter measured with a profile board (Nudds 1977) index Field FI 

Shrub vegetation cover Visual estimation of shrub vegetation cover, i.e. cover of shrubs and small trees between 

1.3 and 5 m in height (Keller 2011) 

% Field FI and gap 

Ground vegetation cover Visual estimation of ground vegetation below 1.3 m (Keller 2011) % Field FI and gap 

Mean vegetation height Mean of vegetation point cloud m LiDAR FI and gap 

Maximum vegetation height Maximum of vegetation point cloud m LiDAR FI and gap 

SD of vegetation height Standard deviation of vegetation point cloud m LiDAR FI and gap 

Proportion of lower vegetation  The number of vegetation points between 1.3 m and 5 m divided by the total number of 

all vegetation points  

% LiDAR FI and gap 

Canopy cover The number of vegetation heights above 20 m divided by the total number of all returns, 

including terrain points (Morsdorf et al. 2006) 

% LiDAR FI 

Mean canopy height Mean of interpolated outer canopy surface with a pixel size of 0.5 m (see text for details) m LiDAR FI 

SD of canopy height Standard deviation of interpolated outer canopy surface with a pixel size of 0.5 m (see 

text for details) 

m LiDAR FI 

Canopy ruggedness Terrain ruggedness index (TRI, Wilson et al. 2007) applied on a 3x3 pixel window of the 

outer canopy surface with a pixel size of 0.5 m (see text for details) 

index LiDAR FI and gap 
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FHD Foliage height diversity adopted from MacArthur and MacArthur (1961) to measure the 

degree of scatter of vegetation elements along the vertical forest profile (cf. Clawges et 

al. 2008) (see text for details) 

index LiDAR FI 

Gap size Area of gap m2 ArcGIS gap 

Edge structure Visual classification of gap edge in either open or closed (Hamberg et al. 2009) index Field gap 

 685 
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Table 2. Sum of guild- and species-specific bat activity (number of 5 min intervals with ≥1 bat 686 

sequences) in 32 plots in the forest interior and in the forest gap, respectively. The two detectors in the 687 

forest interior were located at both ground and canopy. SRE: short-range echolocators; MRE: mid-688 

range echolocators without P. pipistrellus; LRE: long-range echolocators. 689 

 

Taxa 

Forest interior                      

(two detectors/site) 

Forest gap               

(one detector/site) 

 

SRE 

 

4,890 

 

1,468 

 Myotis bechsteinii 5 1 

 Myotis bechsteinii-brandtii 55 30 

 Myotis brandtii 59 31 

 Myotis brandtii-daubentonii 449 162 

 Myotis brandtii-mystacinus 220 93 

 Myotis daubentonii 507 156 

 Myotis daubentonii-emarginatus 63 19 

 Myotis daubentonii-mystacinus 452 118 

 Myotis emarginatus 293 43 

 Myotis emarginatus-brandtii 84 14 

 Myotis myotis 411 167 

 Myotis mystacinus 104 19 

 Myotis mystacinus-emarginatus 209 52 

 Myotis mystacinus-nattereri 45 11 

 Myotis nattereri 13 5 

 Myotis spp. 1,894 535 

 Plecotus spp.  27 12 

   

MRE 2,885 6,767 

 Hypsugo savii 3 6 

 Pipistrellus kuhlii 408 616 

 Pipistrellus nathusii 890 3,254 

 Pipistrellus nathusii-kuhlii 312 670 

 Pipistrellus pipistrellus-nathusii 824 2,118 

 Pipistrellus pygmaeus 135 24 

 Pipistrellus pygmaeus-pipistrellus 312 72 

 Pipistrellus spp. 1 4 

 Pipistrellus-Hypsugo 0 3 
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LRE 95 473 

 Eptesicus spp. 45 183 

 Eptesicus-Nyctalus 8 41 

 Eptesicus-Vespertilio 0 7 

 Eptesicus-Vespertilio-Nyctalus 17 45 

 Nyctalus leisleri-Vespertilio murinus 0 1 

 Nyctalus spp. 25 177 

 Nyctalus-Vespertilio 0 15 

 Vespertilio murinus 0 4 

 690 

  691 
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Table 3. Variables and their relative importance (effect size) represented by the Estimate from GLMMs relating standardized variables of forest vegetation 692 

structure to the activity of different bat guilds and P. pipistrellus in the forest interior and the forest gaps. SRE: short-range echolocators; MRE: mid-range 693 

echolocators without P. pipistrellus; LRE: long-range echolocators. The results are reported for each of the dataset containing variables recorded in the field 694 

and the respective LiDAR variables (leaf-on, leaf-off and combined). 695 

 696 

 697 

Model Variable Leaf-on    Leaf-off    Combined leaf-on leaf-off  

              

Forest interior  Estimate SE t P Estimate SE t P Estimate SE t P 

              

SREa FHD -0.18 0.08 -2.36 * -0.22 0.07 -3.01 ** -0.20 0.07 -2.66 ** 

 Density of trees -0.18 0.08 -2.30 * -0.20 0.08 -2.70 ** -0.19 0.08 -2.47 * 

 Temperature 0.02 0.01 1.70 . 0.02 0.01 1.78 . - - - - 

              

MREa FHD - - - - -0.30 0.14 -2.18 * -0.42 0.14 -2.94 ** 

 Canopy ruggedness - - - - 0.28 0.13 2.13 * 0.48 0.15 3.22 ** 

 Mean canopy height 0.30 0.15 2.03 * - - - - - - - - 

 LAI -0.33 0.15 -2.24 * - - - - - - - - 

              

LREb Mean canopy height 0.72 0.23 3.12 ** 0.71 0.24 2.99 ** 0.72 0.23 3.11 ** 

 Temperature 0.11 0.04 2.68 ** 0.11 0.04 2.67 ** 0.11 0.04 2.68 ** 

              

P. pipistrellusa FHD - - - - -0.28 0.14 -2.02 * -0.44 0.14 -3.21 ** 

 Canopy ruggedness - - - - - - - - 0.56 0.14 3.94 *** 

 LAI -0.40 0.14 -2.83 ** -0.40 0.14 -3.00 ** -0.37 0.12 -3.02 ** 

 Temperature 0.05 0.03 1.70 . 0.05 0.03 1.68 . - - - - 

              

Forest gap              

              

SREa Ground vegetation cover 0.19 0.07 2.54 * 0.19 0.07 2.54 * 0.19 0.07 2.54 * 
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MREa Mean vegetation height 0.22 0.12 1.88 . 0.29 0.12 2.46 * 0.27 0.12 2.26 * 

              

LREb Canopy ruggedness - - - - - - - - 0.32 0.13 2.37 * 

              

P. pipistrellusa Mean vegetation height 0.31 0.11 2.91 ** 0.34 0.10 3.27 ** 0.33 0.10 3.21 ** 

 698 

SE: standard error. 699 

aGLMMs with a negative binomial distribution.  700 

bGLMMs with a Poisson distribution. 701 

. P < 0.1, * P < 0.05, ** P < 0.01, *** P < 0.001 702 

FHD: foliage height diversity; LAI: leaf area index 703 
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FIGURES 704 

 705 

 706 

Fig 1. Sampling design showing the eight 1-km2-sampling squares (red squares) in the elevation 707 

model of the study area (top right). The nested plot design within each km2 (top left) includes four 708 

plots in the forest interior (small black squares) and the four corresponding gaps (small black 709 

polygons). The bottom figures show normalized LiDAR point clouds representing the forest floor and 710 

the 3D distribution of vegetation elements, as well as the location of the bat loggers (black boxes) in 711 

each plot. We placed two loggers in the forest interior (bottom left) and one in the forest gap (bottom 712 

right). 713 
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 714 

Fig 2. Normalized LiDAR point clouds from the combined leaf-on and leaf-off dataset for four plots 715 

along a gradient of canopy ruggedness (CR) and foliage height diversity (FHD). The distribution of 716 

return heights (in meters) along the vertical profile is shown by vertical density plots for the leaf-on 717 

and leaf-off datasets separately, using the same scale as for the coloured scale bars. 718 
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