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Abstract Here we investigate three long-standing princi-

ples of granular mechanics and avalanche science: dila-

tancy, effective stress and dispersive pressure. We first

show how the three principles are mechanically interre-

lated: Shearing of a particle ensemble creates a mechanical

energy flux associated with random particle movements

(scattering). Because the particle scattering is inhibited at

the basal boundary, there is a spontaneous rise in the center

of mass of the particle ensemble (dilatancy). This rise is

connected to a change in potential energy. When the center

of mass rises, there is a corresponding reaction at the base

of the flow that is coupled to the vertical acceleration of the

ensemble. This inertial stress is the dispersive pressure.

Dilatancy is therefore not well connected to effective-

stress-type relations, rather the energy fluxes describing the

configurational changes of the particle ensemble. The strict

application of energy principles has far-reaching implica-

tions for the modeling of avalanches and debris flows and

other dangerous geophysical hazards.

Keywords Avalanches � Bagnold � Cohesion � Dilatancy �
Dispersive pressure � Density � Effective stress � Flow
regime � Granular mechanics � Jerk � Reynolds � Terzaghi

1 Introduction

Three central concepts of granular mechanics are dila-

tancy, effective stress and dispersive pressure. All three

principles are applied to describe the mechanics of haz-

ardous, gravitationally driven mass movements, particu-

larly snow and rock avalanches and debris flows.

1.1 Reynolds and dilatancy

Dilatancy was first introduced by Reynolds [26] to explain

the increase in volume when a material composed of rigid

particles is sheared. Reynolds, in fact, believed this was the

distinctive feature of granular materials, making granular

mechanics unique and set apart from the field of continuum

mechanics. However, in 1886 Reynolds wrote ‘‘...but

subsequent consideration revealed the striking fact, that a

medium composed of grains of any possible shape pos-

sessed this property of dilatancy, as long as one important

condition was satisfied. This condition is, that the medium

should be continuous, infinite in extent, or that the grains at

the boundary should be held as to prevent a rearrangement

commencing.’’, see [25], page 219. Reynolds was therefore

aware that any physical description of dilatancy was related

to the nature of the applied shearing relative to the

boundary conditions defining the geometry of the dilation.

1.2 Terzaghi and effective stress

Terzaghi’s effective stress concept appeared some 40 years

later [10, 29] and has become a cornerstone of granular

mechanics. Terzaghi modified Coulombs well-accepted

equation combining shear stress s, internal friction angle /
and total stress r
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s ¼ r tan /ð Þ; ð1Þ

to include the pore water pressure p

s ¼ r� pð Þ tan /ð Þ ¼ r0 tan /ð Þ; ð2Þ

calling the new quantity r0 ¼ r� p the effective stress.

The effective stress models the average normal intergran-

ular contact force per unit area as the difference r� p

describes the buoyant weight of the solid phase. Effective

stress concepts have been invoked to model the shearing at

the basal running surface of debris flows (e.g., [9, 14]) and

dry snow avalanches (e.g., [12, 23]).

1.3 Bagnold and dispersive pressure

The third concept, dispersive pressure, was introduced still

another 30 years later by Bagnold [1]. Bagnold calculated

the pressure that acts to disperse grain layers within a fluid

saturated granular medium and found that the pressure is

proportional to the square of the shear rate. Bagnold uses

the dispersive stress concept to predict the velocity of

several experimental avalanches composed of dry sand, see

[1], page 62. He postulated that this dispersive pressure

was, ‘‘ ...of such a magnitude that an appreciable part of

the moving grains is in equilibrium between it and the force

of gravity...’’, see [1], page 50. Physically this statement is

tantamount to replacing the pore water pressure term in the

effective stress Eq. (2) with the dispersive pressure. Thus,

the effective stress concept was implicitly seen to be valid

for both water saturated and dry granular flows. In both

cases the normal stress is reduced, although by different

pressures, either by the pore pressure or by the dispersive

pressure. Bagnold’s comparison between the experimental

results and dispersive model calculations was rather poor,

at least for today’s standards. This give credence to recent

criticisms of Bagnold’s experiments [11]. However, it does

not alter the fact that shearing increases the pressure—at

constant volume.

1.4 Bagnold, Terzaghi and Reynolds

Bagnold was not only aware of the work of Terzahgi (see

[1], page 62) but also of the much earlier work of Rey-

nolds. Bagnold invokes Reynolds concept of dilatancy to

explain how the dispersive pressure is responsible for a

change of shear stress. He writes: ‘‘...a shear stress causes

a tendency to dilate. If this is resisted by a compressive

stress the ratio of shear stress-compressive stress is near

unity. But if the dilation is allowed to proceed to the static

limit, the ratio falls to that given by the tangent of the angle

of repose. It will be shown that these relations appear to

have their counterparts in the dynamic case of continuing

shear strain when the limit of static dilation has been far

exceeded and the grain mass has become a dispersion.’’

Thus, in Bagnold, we find a combination of all three

principles: shearing causes a dispersive pressure, that

causes a dilation, that causes (in the dynamic case) a

change in the normal stress, linked at static equilibrium

(p ¼ 0) to the angle of repose. The dynamic case being

defined when ‘‘the limit of static dilation’’ is exceeded;

moreover, when the dispersive pressure is strong enough

(p[ 0) to reduce the compressive stress (weight or static

dilation) of the flow.

1.5 Avalanche modeling

Most of todays avalanche and debris flow models are based

on Savage-Hutter-type equations that assume a constant

flow density [28]. In the terminology of Bagnold, they

always remain at the limit of static dilation. This is the

fundamental problem in avalanche and debris flow physics,

that is only recently earning attention [6, 14]. At present,

dispersive pressures are used within the framework of

Terzaghi’s effective stress principle, but are not directly

associated with the energy fluxes required to change the

configuration of the flow volume. Even sedimentation and

re-supension of particles induce a change in the position of

the center of mass [17]. Recent models that invoke dila-

tancy as a fundamental physical property of avalanches

[14] short-circuit the mechanics of dilatancy by using

effective stress principles without consideration of the

actual dispersion, and therefore randomness, not only of

the motion, but also position of granules. This limits the

application of existing models to specific flow regimes; it

also prevents a systematic calibration of model parameters

because the many flow states exceeding the limit of static

dilation are ignored. For example, how boundary condi-

tions—including both terrain roughness and entrainment

processes—influence the flow configuration cannot be

rationally explored and therefore cannot be included in a

detailed hazard analysis.

1.6 Motivation

In this paper we investigate the energy fluxes associated

with dilatancy. There are two: (1) the kinetic energy

associated with random particle motions and (2) the

potential energy associated with random particle positions.

The source of these two energies was identified by Rey-

nolds, Terzaghi and Bagnold: shearing, or more specifi-

cally, the work done by shear. We show why the boundary

conditions play an important role in partitioning of the

random, dispersive kinetic and potential energies. These

considerations allow us to calculate Bagnold’s flow states

that are beyond the limit of static dilation without con-

sideration of the minutiae of particle interactions. Above
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all, we identify the physical and mathematical properties of

the dispersive pressure.

2 Dilatancy and dispersive pressure

2.1 Bagnold’s limit of static dilation: the co-volume

To understand the mechanics of dilatancy we begin by

dividing an avalanche into representative volumes V

(Fig. 1). The volumes are defined by the (constant) basal

area A and flow height h, measured from the bottom of the

avalanche. The center of mass is located at height k. The

volumes are fixed to a particular location (Eulerian for-

mulation) and mass flows through the volume with mean

velocities u ¼ ðu; vÞT. The velocity vectors are defined in

the slope-parallel direction. The volume V contains the

solid particle mass M. The mass is defined per unit area A.

The configuration of the particle mass within the avalanche

core can vary (Fig. 3). This gives rise to different densities

in the core. At the static limit, the particle mass is collapsed

into a solid volume with height h0 measured with reference

to the density of a random packing density q0:

M ¼ q0h0: ð3Þ

Because the height h0 represents the height of a dry

deposition pile of particles, it is given a special designation,

the co-volume height. The center of mass of the co-volume

is located at k0. For example, we could assume that the

particle mass is distributed uniformly over the flow

volume, in which case,

M ¼ qh: ð4Þ

The heights h0 and h represent two different flow

configurations that the avalanche core may assume with the

same mass. The height h0 is typically encountered when

the avalanche has settled in the deposition zone, the

random packing density being close to the deposition

density of the particles. That is, it is encountered when the

avalanche core is in static equilibrium. A mechanical

treatment of dilatancy requires that we understand how

under the action of shearing the volume expands from the

co-volume height h0 to the flow height h.

2.2 Random dispersive and configurational energies

The two configurations in Fig. 2 are associated with two

mechanical energies, see Fig. 3. The first is the random

kinetic energy RK that associated with all particle move-

ments different from the mean velocity of the flow (the so-

called granular temperature). Shearing of the particle

ensemble causes the particles to scatter and have some

velocity component in the slope-perpendicular direction,

that is, different from the mean downslope direction of the

flow u. The total kinetic energy associated with the slope-

perpendicular movement and all fluctuations around the

mean velocities in the slope-parallel directions is contained

in RK. The scattering of the particles necessarily implies

some change in the particle positions and change in

ensemble configuration. We define the quantity RV as the

configurational energy associated with the potential energy

of the center of mass of the particles, see Figs 2 and 3,

RV ¼ Mgðk � k0Þ: ð5Þ

When RV ¼ 0, we are at the limit of static dilation, i.e.,

the co-volume. Note that RV and the potential energy differ

by the potential energy of the co-volume. When RV [ 0 we

have a change in the particle configuration. We consider

RK and RV to be evenly distributed over the volume V. This

assumption is equivalent to depth-averaging.

2.3 Production of dispersive and configurational

energies

The energies RK and RV cannot be studied without con-

sidering their origin. Bagnold recognized that shearing

produces a scattering. However, the shearing energy

always produces the configurational energy RV at the same

time. It is the interaction of the random moving particles

with the boundary that causes the volume expansion.

h0

Avalanche
Volume V

h Mass M

Volume V
Area A

Fig. 1 A granular avalanche consists of flow volumes V. Each volume is defined by the fixed basal area A and the flow height h. Each volume is

considered a particle ensemble with massM. The location of the highest particle defines the location of the top surface of the volume. The density

of each volume is therefore qV ¼ M. The density of each volume can vary in the streamwise flow direction
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However, the volume expansion is only in one direction

normal to the basal surface because of the boundaries. In

fact with no boundaries, there would be a volume change,

but no change in RV, merely a random scattering of par-

ticles. We define the production of RK and RV in the vol-

ume V to be _PK (change in random kinetic energy) and _PV

(change in configuration energy). Physically, _PK and _PV

must coexist and have the property

_PV ¼ c _P and _PK ¼ ð1� cÞ _P; ð6Þ

where _P is the total production

_P ¼ _PK þ _PV: ð7Þ

That is, there exists some partitioning parameter c that

defines how much of the random scattering energy is

transformed into dilatancy [7, 8]. Dilatancy being defined

as a change in gravitational potential energy RV. The

dilatancy parameter c is physically constrained between

the values 0 \c\1. Values c ¼ 0 or c ¼ 1 are physically

impossible because RV and RK coexist. The dilatancy

parameter depends on the mechanical and geometric

properties of the particles, but also on the hardness of the

basal boundary. Balance equations for the free mechanical

energy can be written,

DðRKhÞ
Dt

¼ _PKh; ð8Þ

DðRVhÞ
Dt

¼ _PVh ð9Þ

and

DðRhÞ
Dt

¼ _Ph ¼ _PKhþ _PVh: ð10Þ

These equations are written using the material derivative

notation to indicate that we must also consider the

convective transport of RK and RV.

2.4 Shearing, the source of Reynolds’ dilatancy

Shearing is the immediate source of the energy needed to

change the configuration of the avalanche and expand the

volume V. The shear work rate _Wf is

_Wf ¼ S � u ð11Þ

where S is the shear stress. The work rate _Wf represents the

total work done per unit time and area, that is, the depth-

k0

h0

Co-volume V0

N = Ng

g KN = N  + N

h

..

u

Volume V

k

S

k

Fig. 2 The co-volume V0 represents Bagnold’s limit of static dilation.

The height of the co-volume is h0 and the center of mass is located at

k0. The co-volume characterizes the static equilibrium of the particle

ensemble. The basal normal stress is given by the weight Ng. Under

shearing the co-volume expands to the height h. When the co-volume

dilates, a dispersive reaction NK is produced by the acceleration €k of

the center of mass. The dispersive pressure exists only when there is a

corresponding acceleration of the center of mass. If the center of mass

does not move, NK ¼ 0

.

Particle ensemble Kinetic energy
K

Fluctuation velocities
R

Dilatancy
R

k

h
.

..

w, w, w
. ..

Configurational energy
V

.
V

K

U

Mean velocity

Free kinetic energy

P

Dispersive reaction N

k ,  k

K

Fig. 3 Energies of the granular ensemble. Particle mass is moving through the volume V with mean velocity u. This defines the translational

kinetic energy K in the slope-parallel direction. The random kinetic energy RK is associated with the particle velocity fluctuations and represents

all kinetic energy not in K. This energy is transformed into potential energy RV because of the basal boundary. The sum of RK and RV defines the

free mechanical energy of the flow
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averaged work (W m�2). Bagnold, however, was very

aware that shearing dissipates mechanical energy to heat

energy E at the rate _Q but also is responsible for the

production of free energy _P,

_Wf ¼ _Qhþ _Ph: ð12Þ

Different relations can be used to separate the

dissipation from the production of free mechanical

energy. In snow avalanche models, the following splitting

is applied [2, 30]

DðRhÞ
Dt

¼ _Ph ¼ a _Wf � bRKh; ð13Þ

DðEhÞ
Dt

¼ _Qh ¼ 1� að Þ _Wf þ bRKh: ð14Þ

The parameter a is the dispersion parameter, defining

the partitioning of the frictional work rate into the

production of free mechanical energy _P and heat energy
_Q. Similar to the dilatancy parameter c, the range of the

dispersion parameter is theoretically limited to values 0

\a\1. The parameter b defines the dissipation of free

kinetic energy of the granular solid by collisions, rubbing,

abrasion, etc. The value b ¼ 0 is reserved for purely elastic

systems not found in nature.

2.5 Dispersive acceleration, not dispersive pressure

If the particle interactions generate pressures to change the

location of the center of mass, there must be a corre-

sponding reactive pressure at the basal boundary as shown

in Figs. 2 and 3. This pressure is given by the mass M in

the avalanche core and the acceleration €k (Newton),

NK ¼ M€k: ð15Þ

The speed the center of mass is given by _k ¼ w, see

Fig. 2. The total reaction at the basal boundary N is the sum

of the weight Ng

Ng ¼ Mgz ð16Þ

and NK,

N ¼ Ng þ NK: ð17Þ

The gravity component in the slope-perpendicular

direction is denoted gz. The sum of the accelerations gz

and €k is denoted g0. Because we include the pressure NK,

the pressure is no longer hydrostatic. NK can be negative if

the center of mass is falling. Basal pressure measurements

cannot distinguish between a change in massM or a change

in the location of the center of mass k because the total

normal force N is the sum of Ng and NK [24]. It is therefore

difficult to determine the pressure NK experimentally. A

connection to experimental measurements can nonetheless

be made by noting that the time rate of change of the

normal pressure _N is (from Eq. 15)

_N ¼ M k
...

ð18Þ

when the mass is constant in the volume V. Because

gravitational acceleration gz is constant, it disappears from

the time derivative. The quantity k
...

is the jerk, the change in

acceleration, the avalanche experiences from the shear

interaction with the boundary.

2.6 Change in flow configuration

The problem now is to relate the configurational energy

production per volume _PV to the change in the location of

the center of mass k. We emphasize that _PV is simply some

fraction of the shear work rate _Wf that is transformed into

potential energy. The work done by _PV is used to change

the volume V of the avalanche. LetWV be the work per unit

area done by the particles at the basal boundary. This work

is the product of the normal force N and the change in

volume,

WV ¼ Nk ¼
Z t

0

_PVðtÞhðtÞdt ¼ c
Z t

0

_PðtÞhðtÞdt: ð19Þ

This integral relation connects the dilatancy directly to

the shear power. It explicitly assumes a hard basal

boundary and the direction of the dilation, k. Because the

product of the production of free mechanical energy _P (per

volume) and flow height h is known, it is more convenient

to write the integral equation as a differential equation.

Moreover,

_WV ¼ d Nkð Þ
dt

¼ _PVh ð20Þ

or,

_N þ N
_k

k
¼ 2c _P ¼ 2 _PV; ð21Þ

when we know the relation between the height h and center

of mass location k, k ¼ h=2 (homogeneous mass

distribution). By substitution of Eqs. 15–18

M k
...

þM gz þ €k
� � _k

k
¼ 2 _PV: ð22Þ

This equation can be conveniently written into a series

of three first-order differential equations, namely

Dk

Dt
¼ wðtÞ; ð23Þ

DðMwÞ
Dt

¼ NKðtÞ; ð24Þ
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1

2

DNK

Dt
þ qðtÞ gz þ €kðtÞ

� �
wðtÞ ¼ _PVðtÞ: ð25Þ

These first-order equations allow us to include the

advective transport of k (avalanche height), Mw

(momentum in the z-direction) and NK. Moreover, the

jerk associated with the mass transport can be considered in

the depth-averaged models. This is of great practical

significance, because when a volume dilates, the z-velocity

and z-acceleration of the ‘‘blow-out’’ or ‘‘eruption’’ must

be transported forward with the mass. This is especially

important for the formation of powder snow avalanches

[5].

3 Dilatancy and the fallacy of effective stress
measures

3.1 Work-energy description of dilatancy

The above description of dilatancy is based on work-en-

ergy mechanics and corresponds to both Reynolds’ ideas of

dilatancy and Bagnold’s description of the effects of ran-

dom dispersion. We can now describe the dilation as a six

step process, see Fig. 4:

1. Shearing We apply a shearing to a particle ensemble.

At time t ¼ 0, the volume is at rest; at t ¼ t0 the shear

is applied such that the shear work rate or shear power

increases linearly. At time t ¼ t1, the shear work rate is

constant, see Fig. 4a. Shearing of the granular ensem-

ble creates a random scattering of particles, not only

heat. The kinetic energy associated with the random

scattering is designated RK; and the production is

denoted _PK. The division of the shear work into heat

and random kinetic energy is defined by the dispersion

parameter a.
2. Production of free mechanical energy Under the action

of this time-dependent shearing, the production of free

mechanical energy in the volume rises from zero to a

nearly constant a value as shown in Fig. 4b. However,

when the shear power becomes constant, the production

decreases to zero. At this state, the production from the

constant shearing is in balance with the decay of

random energy. In this case, the net production is zero
_P ¼ 0 and the free energy is constant R = constant. This

case is equivalent to a constant height (dilatancy).
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Fig. 4 Dilation of a particle ensemble with a free upper surface and a

hard basal surface. a The work done by shear. A shear deformation is

applied to a particle ensemble at time t0. The shear deformation is

constant at time t1. b Free mechanical energy R. The free energy

increase from zero and is constant after time t1. c The production of

free mechanical energy _P ¼ _PK þ _PV. d The reaction jerk at the basal

boundary _NK. e The dispersive reaction NK and the total normal stress

N. f The volume has expanded from the co-volume height h0 to the

height h. The dispersive pressure exists only during the change from

height h0 to h

c
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3. Free mechanical energy The free mechanical energy

increases from the initial potential energy of the co-

volume to a constant value defined by the balance

between the shear production and decay (parameter b)
as shown in Fig. 4c. The constant value of free

mechanical energy corresponds to the constant shear

power.

4. Jerk, dispersive acceleration Because there is a hard

basal boundary at the bottom of the avalanche, a part

of the particle scattering is used to raise the center of

mass and change the configuration of the particle

ensemble. The center of mass is jerked upwards as

shown in Fig. 4d. The flux of random kinetic energy _P

at the boundary is converted into the production of

potential energy _PV. The dilatancy parameter c defines
the part of the total production that remains as random

kinetic energy RK and the part simultaneously con-

verted to potential energy RV. The change in the center

of mass represents the mean dilation of the volume

defined by the configurational energy RV. The jerk

disappears when the shearing is constant.

5. The basal pressure At the beginning of the shearing

the reactive pressure at the bottom is given by the

weight of the particle ensemble. When the shear is

applied at time t ¼ t0, the basal pressure at the bottom

increases as the center of mass is accelerated upwards.

At time t ¼ t1, the shear power is constant and the

volume is sustained. The jerk disappears and the basal

pressure returns to the weight of the particle ensemble

as shown in Fig. 4e.

6. Dilatancy The height of the volume increases from the

co-volume height h0 to the dilated height h. Although

the height of the ensemble has changed, the pressure at

the bottom is unchanged. Only when the height is

changing, there is a corresponding change in

pressure (jerk).

3.2 Stress- and energy-based descriptions

of dilatancy are not equivalent

There is a fundamental difference between stress-based and

energy-based descriptions of dilatancy. Stress-based for-

mulations postulate the existence of a dispersive pressure p

that not only changes the location of the center of mass

when the ensemble is sheared, but also maintains the

unchanging position of the center of mass when the

shearing is constant. There is no stress measure that can

fulfill both roles. There is undoubtedly a stress that changes

the location of the center of mass; however, once the

volume has dilated, this stress no longer acts and the sys-

tem is in equilibrium, the reaction at the bottom of the

avalanche returns to hydrostatic, see Fig. 4. The dispersive

pressure is directly related to the change in shear work,

which produces fluxes of random energies _PK 6¼ 0 and
_PV 6¼ 0. When _P ¼ 0, the dispersive pressure disappears

and the dilation is maintained by a constant random kinetic

energy, RK ¼ constant. This energy is constant when the

production by shearing is in balance with the decay caused

by inelastic interactions. For an interesting discussion of

the equilibrium/out-of-equilibrium role of dispersive pres-

sure in inverse grading, see [18–20].

3.3 Effective stress cannot be measured,

only calculated

The problem with effective stress is that it cannot be

directly measured. It is impossible to measure the effective

stress because it represents the mean stress acting on the

solid phase, N � p. If such a stress exists, then there must

be an equal and opposite stress, a reaction, at the basal

boundary, see Fig. 5. This stress must be associated with

the acceleration of the center of mass. Thus NK is the

dispersive pressure, but defined where it can be identified

in experiments, as a reaction at the basal surface; moreover

NK ¼ �p. The mean total normal stress N can be measured

in chute experiments using force plates [24]. We emphasize

that the volume dilation occurs in a field of constant

acceleration (gravity) and therefore the dispersive accel-

eration can only be captured as a change in acceleration, or

a jerk, at the basal boundary. When there is no change in

Ng

N = M kK
..

Ng

gN = N  - pe N = N  + N K

..
(a) (b)

u

k h

k
u

h

..

 p
SS

g

k=0

Fig. 5 The force balance at the base of the avalanche. a The effective
stress concept introduces only the pressure p. There is no acceleration

of the mass upwards, €k ¼ 0 (in violation of Newtons law) and there is

no equal and opposite reaction at the bottom (in violation of Newtons

law). Effective stress principles are used without dilatancy. The force

on the bottom is given by the effective pressure Ne ¼ Ng � p. b
Energy-based approaches assume granule scattering induces an

acceleration upwards €k 6¼ 0. The upwards acceleration has a reaction

at the bottom NK. The total force on the bottom is given by the sum of

the weight Ng and the reaction to the dispersive acceleration NK
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the center of mass, NK ¼ 0 and the mean pressure is N ¼
Ng (hydrostatic). Therefore, it is possible to distinguish

between the weight component Ng and the dispersive

reaction NK associated with the change in the center of

mass. It requires independent measurements of flow mass

(flow height, density, etc.). Excess pressures that are

measured in large-scale experiments [13, 22] or laboratory

experiments [15, 16] can be better understood with

unsteady descriptions of dilatancy and rapid changes in the

location of the center of mass.

4 Conclusions

4.1 Dilatancy and unsteady flow

In real avalanches the shear power is hardly ever such that

we have a steady state. In order to understand dilatancy, we

must understand how we come from one steady state to

another. Dilatancy is very much related to the unsteadiness

of the flow because it describes the change in flow height.

The steady flow state reflects a constant height and there-

fore isobaric conditions. Dilatancy requires departing from

isobaric conditions in order to move the center of mass

against gravity. This requires an input of random kinetic

energy. The source of this energy is given by the shear

power. This produces a change in acceleration of the center

of mass, which is called a jerk. At steady state there is no

jerk and therefore no change in flow height. Similar to

thermodynamics, a change in height is directly related to a

change in energy (PV ¼ nkT). The kinematics of dilatancy

is independent of the constitutive relation for shear.

4.2 Granular minutiae

The dispersive pressure has often been related to the force

imparted to the ground by a single particle collision. This

force is related to the pre- and post-impact speed of the

particle and therefore the coefficient of restitution

describing the particle/ground impact, see Fig. 6a. The

result of a multitude of particle impacts defines the colli-

sional footprint and therefore the uplifting force or dis-

persive pressure. Here we adopt a different viewpoint:

Instead of studying a single impact we ask what is the net

result of the particle scattering and the interaction with the

boundary? Our recent experience with the rockfall problem

reveals that the outcome of an inelastic collision is poorly

described by ideal restitution coefficients because they do

not account for particle shape and complexity of the impact

configuration [21]. If the result is an upward acceleration of

the particle ensemble, then the mean pressure must be

equal to the reaction of the inertial force, see Fig. 6b. We

do not attempt to go from a single particle collision to

study the deformation of the ensemble. Rather, the flux of

random kinetic energy of the particle scattering defines – in

the mean – the particle velocities and the corresponding

deformation of the ensemble. Instead of considering the

minutiae of the granular interactions, including the veloc-

ities of individual particles, we study the configurational

energies associated with the center of mass.

We conclude that the dilatancy of the granular ensemble

is constrained by the dispersive energy of the random

particle movements, as well as the conversion of random

kinetic energy into potential energy because of the basal

boundary. These are physically limited processes. It is not

possible to describe dilatancy with stress concepts because

stress alone does not describe the energy usage to expand

the volume. A similar approach is considered to model the

collapse of the volume: Random energy is withdrawn from

the granular ensemble as a whole and must not be defined

by inelasticity of individual particle collisions, although

this is clearly the driving process.

4.3 Parameterization of dilatancy

We note that the mechanics of dilatancy is best described

by three bulk energy parameters: a, the dispersion param-

eter that splits the shear work into heat and random scat-

tering, c, the dilatancy parameter that divides the random

scattering energy into kinetic and potential parts, and b, the
dissipation parameter controlling the decay of random

kinetic energy. These parameters partition the shear power

and therefore govern the magnitude of the dispersive

N = M kK
..

Ng

v+

v-

Pre- and post
impact velocities

Mean normal stress

(b)

u

k h

k
..

(a)

Collisional footprint

Restitution coefficients

u

Dispersive acceleration

Dilatancy

Fig. 6 a Dilatancy and the dispersive pressure are often described

using the concepts of granular minutiae: binary collisions, restitution

coefficients, pre- and post-impact velocities, the collisional footprint,

etc. b The result of all inelastic binary interactions is to create a mean

upward acceleration €k that has a reaction at the base of the flow
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acceleration in the z-direction. They directly control the

flow configuration and therefore the frictional properties of

the flow. Parameterization of the energy fluxes leads

automatically to a description of different avalanche flow

regimes and transition phenomena [3].

4.4 Cohesion

Finally, the energy formulation facilitates the introduction

of additional physical processes and material properties

that are important to describe further flow features of

avalanches and debris flows. One such important process is

cohesion, describing the ‘‘stickiness’’ of the particles [27].

Cohesion, also a non-directional, random process in a

particle ensemble [4], can be introduced by adding the

cohesive force N0 to the work equation of dilatancy Eq. 19,

WV ¼ ðN þ N0Þk ¼ c
Z t

0

_PðtÞhðtÞdt: ð26Þ
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