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Abstract The present study focuses on developing models
to predict lichen species richness in a UNESCO Biosphere
Reserve of the Swiss Pre-Alps following a gradient of land-
use intensity combining remote sensing data and regression
models. The predictive power of the models and the
obtained r ranging from 0.5 for lichens on soil to 0.8 for
lichens on trees can be regarded as satisfactory to good,
respectively. The study revealed that a combination of
airborne and spaceborne remote sensing data produced a
variety of ecological meaningful variables.
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1 Introduction

The alpine environment and ecosystems are exposed to
both natural and anthropogenetic threats [7, 44]. The
pressure on alpine environment [6] arising from past
development, tourism and possible climate change [12,
14, 23, 45] is far greater than on other types environments
[36]. Inventory of biodiversity and monitoring efficacy of
measures for its conservation have emerged as important
scientific challenges in recent years [19, 28]. Because it is
almost impossible to have a complete biodiversity survey at
the regional scale [33, 47], methods for extrapolations are
needed. These methods provide information that is remote-
ly similar to field samples and which would allow to
considerably reduce extensive field surveys [8].

To date, regression analyses in particular have been
broadly applied in ecology [14, 22]. Some studies [15, 43]
reveal that use of modern regression approaches has proven
particularly useful for modeling spatial distribution of
species and communities. Thus, in combination with
regression analyses, airborne and spaceborne remote sens-
ing data may help in the assessment of biodiversity in a
mountainous region. Estimates of species richness within a
region can then be used to focus on targets in inventories so
that appropriate levels of sampling can be reached in these
areas. Calculation of potential biodiversity hotspots might
be helpful for conservation efforts particularly in moun-
tainous regions, e.g., for an assessment of the landscape
itself and for future protection planning.

This study focused on an assessment of lichen species
richness for six test sites within the UNESCO Biosphere
Reserve Entlebuch in the Swiss Pre-Alps following a
gradient of land-use intensity combining remote sensing
techniques and regression analyses. This study ties in with
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the European Union Project BioAssess, which is aimed at
quantifying patterns in biodiversity and developing “Biodi-
versity Assessment Tools” that can be used to rapidly assess
biodiversity. For this project, seven biological indicators
(soil macrofauna, collembola, ground beetles, plants,
butterflies, birds and lichens) as well as remote-sensing-
based indicators (non-biological) for a biodiversity assess-
ment were collected in the test sites for eight participating
countries (for more details, see the BioAssess homepage
http://www.nbu.ac.uk/bioassess/).

Lichens are mutualistic symbiotic organisms and consist
of two unrelated components: a fungus (the mycobiont) and
one or more algae or cyanobacteria (the photobionts). Many
species have evolved a requirement for substrates that are
themselves by-products of advanced succession in more
dominant ecosystems. Lichens are affected by various
forms of anthropogenetic disturbance such as agriculture,
pasture and forest management [39], atmospheric pollution
and climate change [29, 31]. These disturbances can be
detected by using remote sensing data and ecological
modeling. Some studies show the combination of lichens
with remote sensing methods: e.g., lichens have been
particularly used as an indicator of ecosystem disturbance
[32], serve as indicators of forest age [3, 37], or are
involved in remotely sensed evaluation of net ecosystem
productivity [20]. In other studies, predictivity of ecological
values was tested using lichen relevés [30] or lichen
diversity has been predicted using stand characteristics in
CIR aerial photographs [3].

The objectives of this study were to extract and correlate
ecological meaningful variables derived from both airborne
and spaceborne remote sensing data with lichen species

richness of the field surveys and to build regression models
to predict lichen diversity on the investigated test sites.

2 Methods

2.1 Study area

The study area is located in the northern Pre-Alps of central
Switzerland in the region of Entlebuch, which has been
accredited as an UNESCO Biosphere Reserve since
September 2001 (figure 1a, b). The region is characterized
by a complex topography with impenetrable gorges, rocky
slopes, karst areas and fluviatile deposits, which has
resulted in a fragmented landscape. The region covers an
area of 395 km2. The study area is dominated by strong
topography with an altitudinal range between montane
(600 m) and alpine zone (2,300 m). The mean annual pre-
cipitation in the area is 1,581 mm and the annual tem-
perature ranges from −4 to 15.5°C. The landscape is mainly
dominated by fragments of forest, rich and poor pastures
and natural grassland, mires as well as rocks and small
settlements. The study area consists of six landscape types
each covering 1 km2. These landscape types are also called
land-use units (LUU) and have been defined using the
BioAssess gradient of land-use intensity. LUU1 contains
more than 50% old growth forest and represents extensive
land use. LUU6 on the other end of the gradient contains
more then 50% grassland and represents intensive land use.
The other LUUs are distributed according to management
intensity, which is defined after the percentage of different
land-use classes inside the test areas (table 1, figure 2).

Figure 1 (a) View of the study area at UNESCO Biosphere Reserve Entlebuch, central Switzerland. (b) Locations of LUU1 to LUU6, each
measuring 1 × 1 km2, and the 96 sampling plots that are illustrated as black spots
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2.2 Training and reference data sets

Field data – lichen relevés A training data set is required to
calibrate the models, whereas reference data are required to
validate the quality of the calibrated models. In our case,
we used training data of the lichen surveys.

A total of 96 sampling plots (6 × 16) were collected that
form a grid of 200 m2 mesh size (figure 1). All 96 lichen
sampling plots were set up by differential GPS measure-
ments with an accuracy of ± 0.5 m. Lichen surveys were

carried out in 2001 and 2002 on the 96 sampling plots (16
per LUU) on a circular area of 1 ha (radius, 56.41 m).
Within each sampling plot, 12 collecting sites were
randomly selected (figure 3).

At each of the 12 collecting sites, lichen relevés were
carried out on three different substrates – trees, rocks and
soil – representing all major lichen substrates which could
be affected by changes in agricultural and forestry
management. All lichens (except if they were smaller than
5 mm) were considered that occurred inside a 50 × 40 cm
frequency grid (mesh size, 10 cm) of the relevés on soil or

Table 1 Description of the six land-use units (LUUs) with characterization of landscape and the land-use criteria (columns 1–3).

Description of the six land-use units (LUUs)

LUU Classification Criteria (% of land use) Dominant lichen
species

No. of
frequency
units

Substrates No. of
frequency
units

1 Old-growth forest Old-growth forest >50% Arthonia leucopellaea 230 Trees 105
Other forests–woodland–
shrubland >10%

Graphis scripta 235 Rocks 44

Other land uses?
Lepraria lobificans 320 Soil 12
Phlyctis argena 329
Thelotrema lepadinum 206

2 Managed forest Managed forest >50% Chaenotheca
chrysocephala

119 Trees 91

Other forests–woodland–
shrubland >10%

Hypogymnia physodes 387 Rocks 49

Other land uses?
Imshaugia aleurites 421 Soil 18
Parmeliopsis ambigua 262
Phlyctis argena 225

3 Mixed use dominated by forest
or woodland

Forest–woodland–
shrubland >50%

Chaenotheca chrysocephala 159 Trees 72

Grassland >10%
Hypogymnia physodes 556 Rocks 40

Crops >10%
Imshaugia aleurites 226 Soil 11
Parmeliopsis
ambigua

172

Pseudevernia
furfuracea

229

4 Mixed use not dominated by a
single land use

Forest–woodland–
shrubland >25%

Lecanora carpinea 152 Trees 93

Grassland >25%
Lecanora chlarotera 387 Rocks 111

Crops >25%
Phlyctis argena 242 Soil 5
Lecidella elaeochroma 259
Parmelia sulcata 119

5 Mixed use dominated by
pasture

Grassland >50% Hypogymnia physodes 100 Trees 34
Crops >10% Lecanora dispersa 140 Rocks 98
Forest–woodland–
shrubland >10%

Placynthium nigrum 129 Soil 12
Dermatocarpon miniatum 136
Verrucaria macrostoma 92

6 Mixed use dominated by
arable crops

Crops >50% Lecanora carpinea 131 Trees 42
Grassland >10% Lecanora chlarotera 226 Rocks 69
Forest–woodland–
shrubland >10%

Phlyctis argena 175 Soil 8
Verrucaria muralis 154
Lecidella elaeochroma 208

For each LUU, the five dominant lichen species are listed (column 4) with number of frequency grids where the lichens were collected (column
5). Column 7 lists the species richness (number of different species) of the three substrates (trees, rocks and soil) collected in the field survey for
each LUU.
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inside four neighboring frequency ladders (each with an
extent of 50 × 10 cm, mesh size 10 cm) of the relevés
on trees (see figure 4). The same principle of frequency
ladder was also applied for lichens on rocks. Thus, the
area investigated in each relevé always remained the
same, 0.2 m2 [40]. For relevés on trees, the nearest tree
within the border of the sampling plot was selected (starting
from the center of a collecting site). For relevés on rocks,
the nearest saxicolous object within the border of the
sampling plot with a size larger than 50 × 40 cm was
selected (starting from the center of a collecting site). For
relevés on soil, in the center of each collecting site, a
frequency grid of 50 × 40 cm, mesh size 10 cm) was placed
on the ground.

Lichenicolous fungi and non-lichenized fungi, which are
often treated by lichenologists (e.g., Arthopyrenia), were
not studied. For each lichen species, the number of unit
areas (10 × 10 cm) where the species occurred was counted
(a value ranging from 1 to 20 for both the frequency grid
and the four frequency ladders). Since delimitation of
individuals is often difficult or even not possible in lichens,
we used the number of occupied unit areas as abundance

measure. The lichen data are stored in a relational database
at the Federal Research Institute WSL at Birmensdorf,
Switzerland. Table 1 gives an overview of dominant lichen
species and species richness for each LUU.

As calibration data, 48 sampling plots were chosen. The
remaining 48 sampling plots served as reference data set
(see figure 3).

2.3 Model calibration data

Biological/ecological meaningful features as explanatory
variables had to be found in order to calibrate a model of
predicting lichen species richness. For this purpose,
original, derived, and a combination of spectral and spatial
information of both airborne and spaceborne remote
sensing data were used. In this study, 12 airborne digital
Color Infrared (CIR) orthoimages of 1999 and 2001 were
used, each covering an area of approx. 2 km2. The scale of
1:5,000 provides a ground resolution of 0.3 m. Each image
offers three color bands of numerical information with 256
intensity levels: visible green (500–600 nm), visible red

Figure 2 Typical landscape of LUU1 to LUU6 following a land-use intensity gradient from low to high intensively use and from closed canopy
to open landscape
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(600–700 nm) and near infrared (750–1,000 nm). The
special accuracy of the CIR orthoimages is about 0.3 m. In
addition to the original spectral and spatial information,
several derivatives of the CIR orthoimages were calculated.
A few derivatives were combined with Quickbird satellite
data. Here, multispectral Quickbird satellite data of June
2002 with a spatial resolution of 2.8 m was used.
Multispectral bands include blue (450–520 nm), green
(520–600 nm), red (630–690 nm) and near infrared (760–
900 nm). For our approach, we extracted derivatives using

both standard methods as well as methods with additional
expert knowledge.

Furthermore, a digital terrain model with a spatial
resolution of 25 m (DHM25 ©2003 Swisstopo, DV
455.2) and digital surface models (DSM) were used. All
data sets are based on the coordinate system of the Swiss
Federal Office of Topography (Wabern, Switzerland). The
spatial resolution chosen for all data sets used in this study
was 0.5 m, and the spatial accuracy for all data sets lies in a
range of 0.5–1 m.

Figure 4 The collection of
lichen on trees, rocks and soil
using frequency ladders and
grids

Figure 3 An example of the
BioAssess sampling design for
LUU6 with the 16 sampling
plots (a circle with 56.41 m),
where the three different lichen
relevés were carried out at 1–
12 randomly selected collecting
sites (within each sampling
plot). All model variables were
calculated within these circles
around each sampling plot
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Figure 5 Difference between
simple and detailed classifica-
tion for LUU 4. The simple
classification (left map) only
distinguishes non-forest (yellow),
forest (green), shadows (black)
and sealed surface (gray). In the
more detailed classification
(right map), non-forest areas are
subdivided into wetlands (light
blue), unmown (light green) and
mown (darker green) grassland,
rock&gravel (pink), and bare
soil (beige). Additionally, forest
areas are subdivided into decid-
uous forest (dark green), conif-
erous forest (green) and mixed
forest (blue green)

Table 2 Overview of all 32 calculated variables divided into first and second category of detail and their linked environmental/ecological
features.

Overview of all 32 explanatory variables

Name Linked environmental/ecological features Comments Variable

First category ID
Mean, majority, minority,
and sum of red, green, NIR

Spectral reflection, absorption
and transmission of the
vegetation cover

Original channels of CIR orthoimage 1–3

Ratio1 Spectral reflection, absorption
and transmission of the
vegetation cover

Channel green/Channel (red + NIR) 4

Ratio2 Spectral reflection, absorption
and transmission of the
vegetation cover

Channel red/Channel (green + NIR) 5

Ratio3 Spatial heterogeneity of
vegetation cover

Channel NIR/Channel (red + green) 6

Variance red, green, NIR Spatial heterogeneity of
vegetation cover

Returns variance in a moving window 7–9

Skewness Spatial heterogeneity of
vegetation cover

Returns skewness in a moving window 10–12

Contrast red, green, NIR Chlorophyll absorption Returns contrast in a moving window 13–15
Vegetation Index Leaf area index, chlorophyll content, NIR − red 16
NDVI Aboveground phytomass, moisture NIR − red/NIR + red 17

Second category
Fraction of land cover
(3 classes)

Fragmentation of vegetation
and landscape

Forest, non-forest, non-vegetation 18–20

Fraction of land cover
(12 classes)

Fragmentation of vegetation
and landscape

Coniferous, mixed and deciduous forest,
mown grass, unmown grass, rock and gravel,
bare soil, sealed surface, single trees and hedges,
shadows, wetlands, water bodies

21–32

The third column provides additionally information on each variable.
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To assess and categorize the contribution of ecological
meaningful variables to the model, we compared the two
categories. First category variables provide information on
spatial heterogeneity, spectral reflection, absorption and
transmission, chlorophyll content and aboveground phyto-
mass of vegetation cover. This implies simple image
processing methods (standard methods) of the CIR
orthoimages, and can be performed without additional
expert knowledge, e.g., of biologists. In addition to the
three original channels (red, green, NIR), several new
variables were generated using both spatial and spectral
information within a moving window of different sizes.
Table 2 lists all variables applied in this study and their
linked environmental/ecological features.

Second category variables are based on first category
variables and were built using Quickbird data, expert
knowledge and field experiences [30]. To meet these
requirements, new image processing techniques were
applied to produce homogenous objects and well-defined
object edges [5]. Beyond the pure spectral information,
these image objects are characterized by a number of
additional features, such as texture and neighborhood
information, which cannot be optimally exploited using
standard pixel-based approaches [17]. For the extraction of
second category variables, two land cover classifications
were performed using both Quickbird data and CIR
orthoimages: (1) a simple classification only distinguishing
between forest, non-forest and non-vegetation; and (2) a
more detailed classification distinguishing 12 land cover
classes, representing the three lichen substrates of the field
survey: 1) coniferous forest, 2) mixed forest, 3) deciduous
forest, 4) mown grassland, 5) unmown grassland, 6)
rock&gravel, 7) bare soil, 8) sealed surface, 9) single trees
and hedges, 10) shadows, 11) wetlands, 12) water bodies.
For this classification, an object-oriented approach was
applied. These two classifications are shown for LUU4 in
figure 5. Comparisons with reference maps (photogram-
metric image interpretation of 2002) revealed an overall
accuracy of 0.89 for the simple classification and 0.87 for
the more detailed classification.

Table 2 gives an overview of first and second category
variables. To summarize, we produced a total of 32
explanatory variables for the model. Of the total, 17 were
allocated to first category variables, mainly based on simple
reflection values of the three channels of the CIR
orthoimages as well as on spatial information. The remain-
ing 15 were allocated to the second category variables.

Finally, in accordance with the lichen relevés that are
representative for a 56-m (radius) circle, for each variable,
the sum of values was calculated within a 56-m circle for
each of the 96 sampling plots. This was performed by using
a moving window approach – in our case, a moving circle
(see figure 6).

2.4 Statistical model

A model used for biodiversity assessment should not only
be precise but also ecologically sensible, meaningful and
interpretable [4]. Therefore, the choice of an adequate
model should be carefully made, considering possible
advantages and disadvantages. An important statistical
development in the last 30 years has been the advance in
regression analysis provided by various linear models [48].

A linear model specifies the relationship between a
dependent (or response) variable Y, and a set of explanatory
variables Xi, so that

Y � b0 þ b1X1 þ b2X2 þ � � � þ bkXk ð1Þ
where b0 is the regression coefficient for the intercept and bi
values are the regression coefficients for the explanatory
variables 1 through k, computed from calibration data.
Linear models can also include quadratic terms or higher
order.

Linear least-square regression can be generalized by
transforming the dependent variable [25]. Generalized

Figure 6 Illustration of the moving window approach within the 56-m
(radius) circle as applied for all 1–32 explanatory variables. The four
models were applied to calculate lichen diversity hotspots for the entire
extent of the LUUs
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linear models (GLM) comprise a number of model families,
e.g., binomial, Poisson, etc. [9, 13, 15, 16]. However, as-
suming a specific theoretical distribution for the data used
in this study seems to be difficult. A first test using a
Poisson distribution produced poor results and was not
chosen because of the different lichen sampling design
applied in this study. Different collecting procedures (i.e.,
different ways to the next tree and rock patch) rules out the
model of the data as a Poisson process. Therefore, the
simplest “first aid” transformation (square-root transforma-
tion) was used that allows coping with count data [46]. For
each of the four field data sets (total species richness,
species richness for lichens on trees, on rocks and on soil),
stepwise dropping of our 32 explanatory variables was
performed – allowing both backward and forward selection
to build the models. We assumed that the relatively high
number of explanatory variables, often intercorrelated,
would be adequately handled by this stepwise methodology.
Among the variables remaining in the final models, first
category variables are used as single and as quadratic terms,
whereas second category variables were square-root trans-
formed. The analysis was done in S-PLUS [24]. The
complete final models and their explanatory variables are
listed below:

� Richness total � variance nir þ variance nir2 þ ratio2þ
ratio22 þ sqrt coniferous forestð Þ þ sqrt unmown grassð Þ

� Richness tress � variance nir þ variance nir2

� Richness rocks � variance nir þ variance nir2 þ
skewnessþ skewness2 þ sqrt unmown grassð Þ

� Richness soil � ratio1þ ratio12 þ skewnessþ
skewness2 þ sqrt rocks and gravelð Þ

ð2Þ

The 96 sampling plots are divided into a calibration data
set of 48 randomly sampled relevés and a reference data set
consisting of the remaining 48. With this calibration data
set, the model was calculated and prediction values were
calculated for the 48 sampling plots of the reference data.
This was carried out 200 times. The means of the 200 runs
are shown in table 3.

2.5 Model performance

Several statistic measures were applied to evaluate the
predicted species richness against the measured species
richness of the sampling plots. Correlation of the fitted
values with the calibration data values was chosen as a
measure for the model quality (r model in table 3). The
predictive power of the model is estimated by the

correlation of predicted data values with the reference data
values (r reference in table 3).

The accuracy of the model can be estimated by
analyzing the absolute differences between each fitted
value and its correspondent real value (i.e., the residual
errors) of the calibration data. The accuracy of the
prediction is measured by the differences between each
predicted value and its correspondent real value of
reference data set.

In the present study, the 95% quantile of the absolute
errors, the bias (difference between the mean values and the
mean fitted values), median and mean of absolute errors
MAE (predicted species richness compared to reference
species richness) and the G value are applied as accuracy
measures. The G value (G) is a measure of accuracy in the
case of a quantitative response and gives an indication of
how effective a prediction might be, relative to that which
could have been derived from using the sample mean alone.
It is commonly used in ecological modeling [1, 11]. G is
given by equation (3):

G ¼ 1�
Pn

i ¼ 1
Z xið Þ�
�
� Z Xið Þ

�
�2

Pn

i ¼ 1
Z xið Þ�
�
� Z

�
�2

ð3Þ

where Z(Xi) is the measured value at a sampling plot i, Z(xi)
is the estimated value and Z is the overall mean of the
measured sampling plots. A value of 1 indicates a perfect
prediction, while a value of 0 describes no significant
agreement, and negative values indicate that the predictions
are less reliable than if one had used the sample mean
instead [41].

2.6 Application of model

To extrapolate the predicted species richness of the sam-
pling plots to the entire area of the six LUUs, the model
had to be applied accordingly. For each pixel of the six
test sites, lichen species richness was calculated imple-
menting the explanatory variables for the final models in
a moving window approach (in our case, a moving
circle). The sum of values within our 56-m (radius) circle
was calculated for each pixel of the selected explanatory
variable (see figure 6) using Geographic Information
System (GIS) operations. The four corresponding model
equations (with their coefficients) as given in the section
Statistical model serve as a basis for pixel-wise calculation
of species richness for all lichens, lichens on trees, on rocks
and on soil. As results, six maps of predicted number of

Figure 7 Maps of predicted species richness for all lichens for LUU1–LUU6 with their corresponding CIR orthoimages and the 1-ha circles of
sampling plots the models were calibrated with. On the right side, light values indicate highest species richness (=hotspots), whereas dark values
represent low species richness

R
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lichen species for each pixel in the entire six LUUs were
obtained (figure 7).

3 Results

The best results of the models and the combination of
explanatory variables retained in each model are given in
table 3. The quality of the models (r model) ranges between
0.59 for lichens on soil and 0.79 for lichens on trees.
Highest predictive power, with a correlation coefficient
(r reference) ranging between 0.5 and 0.8, and G ranging
between 0.65 and 0.38, is obtained using both first and
second category variables, with the exception of the species
richness for lichens on trees. In general, species richness is
slightly underestimated for sampling plots with high species
richness and overestimated for sampling plots with low
species richness. The bias for all four models ranges from
+ 0.51 to +3.19. A total of 32 variables correlated with the
number of lichen species, but only seven were used for the
final models. Best results for the model for all lichens are
obtained using the explanatory variables variance_nir (var-

iance of NIR channel), ratio2 (ratio Channel red/Channel
(green + NIR), coniferous_forest (fraction of coniferous
forest) and unmown_grass (fraction of unmown grassland),
resulting from the detailed land cover classification. The
model produces an r model of 0.68, an r reference of 0.59
and a G of 0.53.

Concerning the model for lichens on trees, best results
are obtained by the single use of explanatory variables
variance_nir; r model equals 0.79 and r reference reaches
0.8. The associated G equals 0.65.

Similar correlation coefficients for both model and
reference are obtained for the models lichens on rocks and
on soil. Best results are obtained for the model lichens on
rocks using the explanatory variables ratio2, skewness and
unmown_grass. This model generates an r model of 0.61,
whereas r reference is 0.56 and G reaches 0.38.

Finally, for the model for lichens on soil, best results
are obtained using the variables ratio1 (ratio Channel
green/Channel (red + NIR), skewness and rock&gravel
(fraction of rock and gravel); the latter again resulting
from the detailed land cover classification. The r model is
of 0.59, while r reference reaches 0.5. The associated G
equals 0.42.

Table 3 Means of 200 runs for validation of the four calibrated linear regression models of the species richness for lichens total, on trees, on
rocks and on soil.

Models Species richness

Lichen total Lichens on trees Lichens on rocks Lichens on soil

Goodness-of-fit (r model) 0.682 0.791 0.611 0.594
Predictive power (r reference) 0.585 0.801 0.560 0.501
Median (model) 7.456 5.278 6.423 0.598
Median (reference) 8.651 5.652 7.634 0.698
MAE (model) 8.456 6.313 8.689 0.997
95% Quantile of error (model) 20.123 15.120 19.175 3.613
MAE (reference) 9.898 7.001 9.344 1.256
95% Quantile of error (reference) 25.270 15.456 24.232 4.023
Bias (model) +1.012 +1.501 +3.190 + 0.510
Bias (reference) + 0.870 +1.532 +2.703 + 0.535
G 0.534 0.654 0.382 0.421
Model parameters
First category explanatory variables Variance_NIR Variance_NIR – –

Variance_NIR2 Variance_NIR2 – –
– – – Ratio1
– – – Ratio12

Ratio2 – Ratio2 –
Ratio22 – Ratio22 –
– – Skewness Skewness
– – Skewness2 Skewness2

Second category explanatory variables Sqrt(coniferous_forest) – – –
Sqrt(unmown_grass) – Sqrt(unmown_grass) –

Sqrt(rock&gravel)

Only explanatory variables as used for the final models are listed.
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As an overview, figure 8 illustrates the means of the 200
runs of the predicted species richness versus measured
species richness for all lichens and lichens on the substrates
trees, rocks and soil. Figure 7 shows the maps of the
predicted number of species for all lichens in LUU1, LUU3
and LUU6 following a land-use intensity gradient from low
to high intensively use. Areas with low numbers of species
are mapped in black, whereas areas with high numbers of
species are white.

4 Discussion

With this study, we can confirm that the application of
homogenous and reproducible land cover information
derived from both space- and airborne remotely sensed
data as a basis for the model is adequate, and therefore is in

accordance with other studies in this field [38, 42].
Interpretation of CIR aerial photographs could be a useful
method to find certain groups of lichens [3]. The accuracies
(r reference) obtained for both model lichens on trees (0.80)
and for all lichens (0.59) can be regarded as good for the
application purposes by lichenologists. These accuracies are
in accordance with similar experiences of other studies [18,
47]. Also,G values of 0.65 for the model lichen on trees and
0.53 for all lichens indicate a good prediction [11]. On the
other hand, models for lichens on rocks (r reference = 0.56)
and for lichens on soil (0.50) produced partly satisfactory
results and should be further improved (see below). Both
underestimation and overestimation occur in all four models.
The crucial question is how can we improve our models for
lichen species richness?

In this study, we were confronted with several problems
concerning ecological modeling. A model used for biodi-
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Figure 8 Predicted number of species versus measured number of species for all lichens and lichens on the substrates trees, rocks and soil. The
predictive power of the models (means of 200 runs) is given by the correlation coefficient r reference
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versity assessment should also be general, which means it
should be applicable in other regions or different times [21].
Furthermore, the lack of validation and uncertainty assess-
ment of models remains a serious issue in ecological mod-
eling [10]. Finally, a model used for biodiversity assessment
should not only be precise, but should also be ecologically
sensible, meaningful and interpretable [4].

Meeting all the suggested requirements turns out to be
nearly impossible in our case. For example, the particular
model developed here was applied only for six test sites,
each with an extent of 1 × 1 km. Thus, the resulting
variables of the presented linear models may be used for
calculating species richness in neighboring regions of the
UNESCO Biosphere Reserve Entlebuch or the Northern
Pre-Alps with similar vegetation cover and landscape
structures. Applying the model to other regions (e.g.,
Central or Southern Alps) is a well-known problem [18].
The model would first need to be adapted and validated
before being applied elsewhere in the Swiss Alps, but our
basic approach could be the same. For a further improve-
ment of model accuracies, especially for the models lichens
on soil and all lichens, we recommend the following: (1)
further analyses of the distribution of the lichen data and
the sampling design; (2) further testing of other model
versions; (3) implementing additional sampling plots in all
LUU (the number of 96 sampling plots for this study could
be regarded as relatively poor); and (4) extraction of further
calibration data. Points (1) and (2) are related to a crucial
problem that this study had to deal with – the choice of the
“right” model because the sampling design does not suggest
a Poisson distribution. Different collecting procedures (i.e.,
different ways to the next tree and rock patch) rules out the
model of the data as a Poisson process. After various test
runs, a simple square-root transformation was chosen and
turned out to be adequate for our modeling purposes. The
root-square transformation of both the dependent and the
explanatory variables lets certain characteristics of the data
express themselves more or less strongly. Concerning
points (3) and (4), we plan to improve our models
considering these recommendations in the near future and
to test the modified models in other alpine regions. Another
very flexible, powerful approach to habitat modeling is the
use of HyperNiche software [2, 27]. This also implies a
method that automatically incorporates interactions into
multiplicative kernel smoothers. Furthermore, it is especial-
ly useful for models where the predictors are combined
multiplicatively rather than additively; we plan to test this
software for future model development and refinement [26,
34, 35].

The distinction between first and second category
variables was an important step for the development of
the final models and allowed us to assess their contribution
to the corresponding model. Furthermore, it helped us to

drop the variables that contribute less to the model. All 32
variables are linked to a specific biological/ecological
meaningful feature as shown in table 2.

In particular, the use of simple spectral and textural
information values of the CIR orthoimages, which is linked
to spectral reflection and spatial heterogeneity of the
vegetation cover, respectively, produced the best results.
In fact, the implementation of additional second category
variables improved model accuracy again – with the
exception of lichens on trees. For this model, best accuracy
(r model, 0.79; G, 0.65) was produced with the single use
of variance_nir and its quadratic term, whereas the
implementation of additional explanatory variables slightly
deteriorated the model’s accuracy. In this case, the number
of species is directly related to a high heterogeneous
vegetation cover such as forest borders and forest itself.

For the other models, the implementation of root-squared
transformation of these second category variables helped to
significantly improve model accuracies again. The subdivi-
sion of the classes forest into coniferous, mixed and deciduous
forest was a good decision. The three second category
explanatory variables coniferous_forest, unmown_grass and
rock&gravel turned out to be the most contributive variables
for all three models. In particular, the occurrence of
unmown_grass was positively correlated with the species
richness. The omission of unmown_grass for the model with
all lichens and for lichens on rocks lowered accuracies by a
factor of about 20%. This indicates that the influence of
unmown grassland on lichen diversity should not be under-
estimated. Furthermore, habitats for lichens on rocks are
located in rather heterogeneous landscapes. A reason for this
may be that habitats for lichens on rocks are located in highly
fragmented landscapes (spatial heterogeneity of vegetation
cover), where fragments of unmown area are a dominating
land cover type. Interestingly, no other second category
variable in our analysis was really significant. Even the
implementation of variables deciduous_forest and mixed_
forest did not have significant influences on the models.
According to the lichenologists, one would have expected the
explanatory variables sealed_surfaces (streets, buildings) and
mixed_forest to have a certain influence on the model for
species richness.

The 12 land-cover types extracted for this study are
based on what was supposed to be detectable in CIR
orthoimages and Quickbird data, and what was regarded to
be of importance for the lichen diversity. A comparison of
this classification with visually interpreted aerial images
revealed high accuracy and agreement. The main advantage
of the application of an object-oriented image classification
method is that it allowed us to define land cover types
according to the needs of lichen experts. The implementa-
tion of a forest-stand height classification using digital
surface models derived from the CIR orthoimages and a
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digital terrain model further improved the classification
result. A combination of CIR orthoimages with the mul-
tispectral Quickbird image considerably improved the
distinction between forest and non-forest areas. Thus, the
land cover classification applied in this study in combina-
tion with image segmentation methods was an important
step in the development of the models. The main
disadvantage was the relatively high complexity and
required amount of time of object-oriented image classifi-
cation methods.

5 Conclusion

In this interdisciplinary study, remote sensing techniques
were implemented in an ecological modeling approach
according to the needs of lichen experts. Four different
models for an assessment of lichen species richness on three
different substrates were examined – trees, rocks and soil –
for six test sites within the UNESCO Biosphere Reserve
Entlebuch in Switzerland. Species richness was modeled as
functions of 32 remotely sensed explanatory variables.

There are five points to remember about the benefits of
this study. First, linear regression models can be used to
predict lichen diversity, but strongly depend on the
sampling design of the lichen relevés. Thus, the distribution
of the lichen data should be analyzed further. Second,
possible hotspots were calculated and may help in reducing
field surveys and could be useful for possible conservation
efforts in similar regions. The resulting explanatory
variables of the presented linear models may be used for
calculating species richness in neighboring regions with
similar landscape structures. Third, we can confirm that the
application of homogenous and reproducible land cover
information derived from high-resolution remote sensing
data as a basis for the model is very adequate. This means
that not-so-well-known areas can still serve as a basis for
building the methods. Fourth, explanatory variables can be
rapidly derived from high-resolution remote sensing data
and distinguishing between first and second categories
proved to be a good method for the development of the
models. Fifth, the detailed classifications applied in this
study produced up-to-date maps for public authorities and
nature conservation agencies.

Nevertheless, this method cannot replace lichen surveys
altogether; however, it can be used to target focused lichen
forays in the future. Finally, it should be noted that this
method cannot produce any information on lichen species
abundance, dynamics or viabilities; it only indicates the
potential presence or absence of species.
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