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Abstract

This paper presents an approach to assess increase and decrease (2002-1997) of forest area and 

other wooded areas in a mire biotope in the Pre-alpine zone of Central Switzerland using logistic 

regression models and airborne remote sensing data (CIR aerial images, DSM derived from 

them). The present study was carried out in the framework of the Swiss Mire Protection Program, 

where increase and decrease of forest areas are a key issue. In a first step, automatic DSMs were 

generated using an image matching approach from CIR aerial images of 1997 and 2002. In a 

second step, the DSMs were co-registered and normalized using Lidar data. Tree layers from both 

years of various levels of detail were then generated combining canopy covers derived from 

normalized DSMs with a multi-resolution segmentation and a fuzzy classification. On the basis of 

these tree layers, fractional tree/shrub covers were calculated using explanatory variables derived 

from these DSMs only. Bias was estimated by analyzing the distribution of the fractional model 

differences. The corrected models reveal a decrease of tree/shrub probability which indicates a 
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decrease of forest and other wooded areas between 1997 and 2002. The models also indicate real 

shrub encroachment in open mire. The detection of shrub encroachment may be helpful for 

selective logging purposes for sustainable mire habitat management. The study stresses the 

importance of high-resolution and high-quality DSMs and highlights the potential of fractional 

covers for ecological modeling. 
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GLM (generalized linear model), nDSM (normalized digital surface model), NIR (near-infrared)
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from these DSMs only. Bias was estimated by analyzing the distribution of the fractional model 

differences. The corrected models reveal a decrease of tree/shrub probability which indicates a 

decrease of forest and other wooded areas between 1997 and 2002. The models also indicate real

shrub encroachment in open mire. The detection of shrub encroachment may be helpful for 

selective logging purposes for sustainable mire habitat management. The study stresses the 

importance of high-resolution and high-quality DSMs and highlights the potential of fractional 

covers for ecological modeling.
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1. Introduction

This study focuses on assessing increase and decrease of forest area and area of other 

woody species in mire ecosystems between 1997 and 2002 by means of logistic 

regression and Digital Surface Model (DSM) data derived from CIR aerial images. The 

study was carried out in the framework of the Swiss Mire Protection Program which aims 

at conserving mire ecosystems of national importance and outstanding beauty in their 

present state. This implies no decrease of the mire area and no degradation of vegetation. 

To examine the effectiveness of the conservation status, a long-term monitoring program 

was set up in 1996. Within this program, monitoring based on a representative sample of 

130 mires was established to determine whether and how far this aim has been reached. 
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The definition of mire comprises all wetlands with the exception of floodplains and fen 

woodland. To assess the state and condition of the mire ecosystems for the purposes of 

further management and conservation targets, the mire areas and their vegetation were 

described over time and space in significant detail (Grünig et al., 2004; Küchler et al., 

2004). 

Taking into account that changes in the extent of forests, as well as shrub encroachment, 

may alter a sensitive mire biotope, early detection and evaluation of increase and 

decrease of the entire wooded area is indispensable and may help the preservation of 

these biotopes. Change detection in general is a prerequisite for monitoring programs and 

also of high importance for conservation efforts in mires and for future protection 

planning tasks, since both natural (e.g. storm losses) and anthropogenic changes (e.g. 

logging) influence biodiversity in ecosystems (Nagendra, 2001). The fact that 

sustainability has become a primary objective in present-day ecosystem management has 

as one of its consequences the continuous need for accurate and up-to-date land resource 

data (Coppin et al., 2004). According to Turner et al. (2003), continuously accurate and 

up-to-date information on land cover is needed for present-day ecosystem management. 

However, several studies (e.g. St-Onge and Achaichia, 2001; Watt and Donoghue, 2005)

revealed that using traditional methods of field survey or aerial photograph interpretation 

to gain information on exact forest area, canopy height, single tree and shrub occurrence,

and tree growth is not feasible for larger monitoring programs because of costs and time

constraints. By contrast, increase and decrease of forest area and occurrence of shrubs 

can be estimated using high-resolution remotely sensed data. According to Laliberte et al. 

(2004), shrub abundance mapping and encroachment in ecosystems is often performed 
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using object-oriented image analysis. Furthermore, recent progress in three dimensional 

remote sensing mainly includes digital stereophotogrammetry, radar interferometry and 

LiDAR (Hyyppä et al., 2000). For example, canopy height models can be calculated by 

subtracting a DTM from a DSM. DSMs can be generated automatically by image 

matching methods, whereby most commercial packages use cross-correlation or matching 

of interest points. Meanwhile, several LiDAR systems are commercially available (e.g. 

Baltsavias, 1999; Heurich et al., 2003), enabling the derivation of DSMs and DTMs from 

such data as well. Some studies suggest the use of DSM data to detect changes in the 

forest stands (Lefsky et al., 2002; Schardt et al., 2002; Naesset and Gobakken, 2005; Yu 

et al., 2004) and to evaluate growth estimations including extent of forest area and shrub 

encroachment.

There is also a growing need for sensitive tools to predict spatial and temporal patterns of 

plant species or communities (Kienast et al., 1996). Spatially explicit predictive modeling 

of vegetation using remotely sensed data is often used to construct current vegetation 

cover using information on the relations between current vegetation structure and various 

environmental attributes (Davis and Goetz, 1990; Küchler et al., 2004). Guisan and

Zimmermann (2000), Scott et al. (2002) and Guisan et al. (2002) point out that modern 

regression approaches such as generalized linear models (GLM) and generalized additive 

models (GAM) have proven particularly useful for modeling spatial distribution of plant 

species (Guisan et al. 2004) and communities. Since old CIR aerial images are often 

available to calculate DSM variables, retrospective analysis of changes in forest area and 

shrub encroachment in a mire biotope is feasible. Thus, airborne remote sensing data in 
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combination with GLMs could be useful for modeling changes in mire ecosystems over 

time. 

The objective of the present study is to assess increase (shrub encroachment) and 

decrease (forest loss, logging) of forest area and area of other woody species in a mire 

ecosystem between 1997 and 2002 using DSMs derived from CIR aerial images as 

explanatory variables in logistic regression models. The method consists of two steps.

First, discrete forest masking from both years of two levels of detail were generated by 

combining canopy covers derived from normalized DSMs with a multi-resolution 

segmentation and a fuzzy classification. Second, on the basis of these tree layers,

fractional tree/shrub covers are calculated using explanatory variables derived from these 

DSMs only. A fractional cover approach was chosen since it is widely known that the 

discretization of tree covers (Mathys et al., 2006) into a limited number of categories 

results in a loss of information and that fractional cover has higher potential to accurately

describe land cover change over time (Hansen et al., 2002). The resulting shrub/tree 

cover maps contain the fraction of shrub/tree as a continuous variable and can be adapted 

easily and consistently to a range of protecting purposes as applied in the Swiss Mire 

Protection Program. For this modeling approach, a new image matching method (Zhang 

and Gruen, 2004) has been implemented.

2. Material and Methods

This section consists of several steps of processing (from the input data to the final 

models). As an overview the main steps of processing and the methodological workflow 

are given in Fig. 1.
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Figure 1: Overview of the methodological workflow with main steps of processing.

2.1 Study Area

Models have been developed and tested for the mire “Eigenried-Oberallmig” which is 

located on a small plane in the East of Lake of Zug in the Pre-alpine zone of Central 

Switzerland (approx. 47°07’ N and 8°32’ E). The mire site covers an area of 2.61 km2

whereas 1.72 km2 belongs to the core area. The altitude varies from 850 m to 1000 m 

above sea level. The landscape is highly fragmented and characterized by pastures that 

are crossed by shrubs and broad-leafed woodland (see Fig. 2). The dominant vegetation 

types are moist and wet meadows and pastures (Molinietalia caeruleae, Potentillo-

Polygonetalia), low sedge poor fen (Caricetalia fuscae), bog forest (Sphagno-Betuletalia) 

and broad-leaved woodland. The bordering forested area, with an extent of approx. 0.85 

km2, is mostly characterized by opened mixed forest (approx. 40%) and coniferous forest 

(approx. 60%). The most relevant changes for the present study between 1997 and 2002 

are forest loss caused by hurricane Lothar (1999), permanent shrub encroachment in open 

mire land, and selective logging activities and cutting of shrubs as a result of 

conservation efforts.

Figure 2. Left: Overview of the test site (Pixelmap © 2006 Swisstopo JD052552); right: bog and fenland,

broad-leafed woodland and shrubs typical for the mire.

2.2 Remotely sensed data
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This study uses three different sets of input data: CIR aerial images, DSMs derived from 

it and LiDAR data. For the present study, all data sets were resampled to 0.5 m. 

1. The first data set consists of CIR aerial images: 4 (1 strip) of 1997 and 12 (2 strips) of 

2002. Table 1 gives an overview of the scanned image data used in this study. The 1997 

film images had severe scratches on the emulsion side, causing artifacts in the digitized 

images and DSM errors in the automated DSM generation. Image orientation was 

established with 15 ground control points measured by a differential GPS survey and 

using bundle adjustment. RMS of image residuals was 0.198 image pixels for 1997 and 

0.227 for 2002, respectively. The orientation error characteristics for 1997 and 2002 

differed, and especially for 2002 some of the border images had significant errors and 

differences with their neighboring images, causing jumps in the generated DSM (see 

section 2.4.2). Two CIR orthoimages of 1997 and 2002 with ground pixel size of 0.5 m

were produced.

Table 1. Characteristics of the CIR aerial images.

2. The DSMs have a spatial resolution of 0.5 m. Both were generated automatically from 

the above images of the years 1997 and 2002, respectively (see section 2.4). 

3. National LiDAR data of the Swiss Federal Office of Topography (Swisstopo) was 

acquired in 2001 with leaves-off. From the raw data, both a DTM and DSM are generated 

by Swisstopo (as raw irregularly distributed points and regular grid; the first dataset was 

used in this study). The average density of the DSM data was 1-2 points / m2 and the 

height accuracy was (1 sigma) 0.5 m for open areas and 1.5 m for vegetation and 

buildings. The DTM has an average point density of 0.8 points / m2 and height accuracy 
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was (1 sigma) of 0.5 m (Artuso et al. 2003). The DTM was interpolated to a regular grid 

with 0.5 m grid spacing for reasons explained below. 

2.3 Ground truth

Ground truth data to validate the different outputs of the current study (tree layers and 

fractional models) was produced using digitized samples from stereo-images. Three types 

of samples were distinguished and a total number of 3 x 65 samples were digitized from 

the aerial images of 1997 and 2002: 1) Tree/shrub-less areas in 2002 that belonged to 

tree/shrubs in 1997 (decrease, 0.0283km2), 2) Tree/shrub-less areas in 1997 that are 

covered with trees/shrubs in 2002 (increase, 0.0469km2) and 3) Tree/shrub areas and 

tree/shrub-less areas that are unchanged between 1997 and 2002 (equal, 0.0319km2).

2.4 Automatic generation of digital surface models

2.4.1 Matching

Since accurate surface information in forested and open mire land is indispensible for 

modelling, a matching method was applied which is described in detail in Zhang (2005)

and in Zhang and Gruen (2004).

The matching method first performs pre-processing to reduce noise without smoothing 

edges and enhances the contrast. It combines the matching results of the three primitive 

types (feature points with good texture for high-accuracy matching, edges for good 

modelling of surface discontinuities, and grid points for bridging over areas with poor 
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texture) at each pyramid level with probability relaxation matching to ensure local 

consistency and detect matching blunders. The method combines two matching 

algorithms: sum of modified cross-correlation, and at the last pyramid level optionally 

least squares matching that slightly increases accuracy and detects additional blunders. 

From the raw match points, a regular grid is interpolated. The matching method is 

implemented in the operational, quasi-complete photogrammetric processing package 

Sat-PP which supports satellite and aerial sensors with frame and linear array geometry. 

The matching method used the interior and exterior orientation. The resulting DSMs had 

a grid spacing of 0.5 m. In a first run, panchromatic images derived from averaging the 

RGB channels were used for matching. In a second run, the channel that would best 

allow modelling the vegetation surface was selected. Through visual inspection, it was 

determined that the blue channel (showing actually information in green) showed more 

details on vegetation canopy, while in open surfaces and buildings it was similar or 

slightly worse. More contrast and texture are obtained in areas of forest openings (even if 

they are covered with shadows) where the ground is often covered with grass and/or 

small bushes (Fig. 3). This might also be due to specific spectral characteristics of the 

film, the spectral characteristics of the used scanner and the scanning parameters. Thus in 

all further investigations, the blue channel DSM was used.

Figure 3. Colour-coded matching DSM from averaging the RGB channels (left) and using only the blue 

channel (right). The right DSM shows a better modelling of tree individuals and small openings (circle) 

between trees.
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The 1997 DSM was quite noisy due to the film scratches that caused several artifacts 

during the digitization. The noise was especially apparent in homogeneous areas (like 

grassland and pastures), causing surface discontinuities that could be partially 

misinterpreted as shrubs and has to be considered when modeling changes of tree/shrub 

area between 1997 and 2002 (see Fig. 4). It was also of inferior quality compared to the 

2002 DSM due to the larger ground pixel size. The 2002 DSM showed some stripes (Fig. 

4), probably caused by film scanner errors, which were corrected for the 1997 image 

scanning after performing a new scanner calibration.

Figure 4. Detail of the 1997 (left) and 2002 (right) DSMs. The noise in the 1997 DSM is clearly visible in 

bare ground areas. Some stripes are visible in the 2002 DSM again on bare ground. Shrub encroachment in 

2002 is clearly visible on the top right.

2.4.2 Co-registration

The matching DSMs of 1997 and 2002, and the LiDAR DSM and DTM were co-

registered, using a point cloud co-registration procedure described in Akca (2005), Gruen 

and Akca (2005) and Akca and Gruen (2005). This co-registration uses a 7-parameter 3D 

similarity transformation to remove systematic differences (bias) between two datasets, 

e.g. due to different image orientation. To estimate these parameters, control surfaces

such as DSM features that did not change in the two datasets such as bare ground were 

used while large differences due to matching errors were removed by robust filtering. 

Among the seven parameters, only the three X, Y, Z shifts were significant. After co-

registration, the Euclidian distances between the two datasets and the X, Y, Z 
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components were calculated, the latter being more important for these investigations. 

After co-registration of the 1997 and 2002 DSMs, the Z-component of the Euclidian 

distances (sigma a posteriori) was 3.4 m, showing a clear reduction of trees and other 

wooded plants from 1997 to 2002. The difference between the DSMs minus the LiDAR

DTM gives the normalized DSMs (nDSMs), i.e. the 3D objects and especially the canopy 

models. The LiDAR DSM was also subtracted from the 2002 DSM in spite of the small 

time difference. This could give a comparison between the two DSMs and also an 

indication to what extent LiDAR penetrates the tree canopy more compared to matching,

a characteristic that was observed in previous studies (see Baltsavias et al., 2006). After 

co-registration, the Z-component of the Euclidian distances (sigma a posteriori) was 0.8 

m, however, there is no indication as to whether the LiDAR or the matching DSM is 

more accurate, especially since the LiDAR data were acquired with leaves off. 

Results are shown in Fig. 5.

Figure 5. a) Z component of the Euclidian distances 1997 - 2002 DSM showing clearly areas of 

deforestation and shrub encroachment. b) Z component of the Euclidian distances LiDAR DSM - 2002 

DSM. At the top and bottom, the effect of the stripes in the matching DSM due to film scanner 

miscalibration is visible. The orange areas at the top left are probably due to differences in image 

orientation between the two flight strips and within each strip causing discontinuities in the 2002 DSM. 

These areas are also visible in Fig. 5. a) but have less sharp boundaries due to the noise of the 1997 

matching DSM. Due to software limitations regarding computer memory, the LiDAR DSM and DSM were 

sub-sampled to a 2.5m grid

2.5 Tree layers
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Two levels of generalization for tree layers serve as the basis (response variable) for the 

fractional modeling approach. Two canopy covers were calculated by a multistage 

procedure using slope data of the nDSMs of 1997 and 2002. This simple but robust 

algorithm incorporates a slope threshold, minimum area for tree canopy and minimum 

area for forest gaps in the nDSM data. In a second step, non-tree objects (buildings, rocks

etc.) of the canopy covers were removed by an object-oriented image analysis using CIR

orthoimages spectral information. This implies a two stage process with a multi-

resolution segmentation of the canopy cover and the CIR orthoimages (1997 and 2002) 

and a fuzzy classification using eCognition (Baatz and Schäpe, 2000). The resulting tree 

layers have a spatial resolution of 0.5 m and have most previous errors removed. 

For the purpose of the present study, a total of four tree layers (two for 1997 and two for 

2002) were produced using different slope thresholds, minimum tree canopy area and 

minimum gap size. Tree layers that lie in between these thresholds have different levels 

of generalization of the forest area but are appropriate for the fractional modeling 

approach.

The thresholds for the three parameters were set empirically but have been successfully 

tested for fine-scale modeling of forest area in mire ecosystems by Küchler et al. (2004). 

For the more detailed tree layers, trees97_detail and trees02_detail, all slope values of 

higher than 15 degrees, a minimum tree canopy area on single tree level (1.25 m2) and a 

maximum gap size of 120 m2 were considered. For the more generalized tree layers

trees97_general and trees02_general, only pixels with slope values higher than 25 

degrees, a minimum tree canopy area on single tree level (7.5 m2) and a maximum gap 
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size of 150 m2 were considered. This means that less tree–like objects are extracted and 

the resulting tree area is smaller than in the first tree layers.

2.6 Quantifying changes in tree and shrub occurrence

Coppin et al. (2004) and Lu et al. (2004) present various change detection algorithms and 

techniques in ecosystem monitoring. Ideally one would like to use imagery from the same 

sensor to keep the sensor characteristics as consistent as possible. It should be noted that 

even using imagery from the same sensor is no guarantee that the sensor characteristics 

will be equal. A straight forward approach to quantify the changes in tree and shrub 

occurrence would be just to compute the difference between tree layers from two survey 

times (e.g. trees02_detail – trees97_detail) after the co-registration of the two data sets. 

However, a possible bias may result from different data quality of the CIR aerial images

from the two survey times, e.g. different spatial resolution, different image scanning 

facilities, varying radiation, and different acquisition data (different status of phenology 

of trees and shrubs). Thus, in the present study estimation of such bias and its reduction

or elimination is a key issue. 

2.6.1 Model choice: logistic regression

According to Toner and Keddy (1997), logistic regression is often used to predict 

probabilities for presence/absence of a specific vegetation type at each point. Shrub/tree 

occurrence maps can be constructed by analysis of these probabilities’ actual occurrence.
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The logistic regression model is a special case of the generalized linear model (GLM) and 

is adapted for modeling such data (see e.g. McCullagh and Nelder 1983). The formula of 

the logistic regression function is given in Hosmer and Lemeshow (1989). Whether a 

pixel belongs to a tree layer or not can be attributed to a binomial variable. The result is a 

fractional tree/shrub cover, i.e. a probability for each pixel to belong to the class 

“tree/shrub”. The training data for the model were selected in a way to enable estimation 

of bias: pixels were only used which belong to the same class in both surveys, i.e. that 

were either corresponding tree pixels or open land pixels in the 1997 and 2002 layers.

The explanatory variables consist of five commonly used topographic parameters derived 

from nDSMs: slope, aspect, curvature, and local neighboring functions; see Table 2 and 

for further details see Burrough (1986). Most of these parameters have been successfully

applied for ecological modeling purposes in mires (Küchler et al., 2004) or in 

biodiversity studies (Waser et al., 2004).

Two pairs of fractional tree/shrub covers per year (1997 and 2002) were produced using 

the tree layers described in section 2.5: one pair based on more detailed layers, the other 

pair using the more generalized layer version.

Table 2. Overview of the five explanatory variables (derived from nDSM) used to generate the fractional 

shrub/tree covers.

2.6.2 Bias estimation

In the context of predictive modeling, bias denotes a systematic error in predicted values

which might be misinterpreted as a change. Küchler et al. (2006) present a method of 
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estimating bias arising from different data quality in two surveys. This method works for 

metric response variables in a multiple linear model. In the present study however, one 

has to deal with a categorical response variable in a nonlinear regression.

The problem in estimating bias is to discern between real change (increase and decrease 

of forest area) and model error. The model error consists of two components: the random 

error and the systematic error or bias. To estimate bias, random error and real change has 

to be estimated as well. At the level of single pixels, the random error is much greater 

than change or systematic error. This can be managed by smoothing the generalized and 

the detailed fractional tree/shrub covers of the years 1997 and 2002 with a moving 

window before computing the difference. A window size of 5 x 5 m with the arithmetic 

mean as the focal function was chosen. If no change has occurred and no bias is involved, 

the differences between the smoothed fractional covers are random. For small ranges 

within the response variable space, one assumes these random errors to be normally 

distributed around a mean of 0. If bias is involved, the mean of the error will shift away 

from 0. In addition, there can be a real change. If this change does not affect the entire

area homogeneously, then only a part of the differences is affected by the change. The 

distribution of the differences will then be long-tailed, or if the changes in one direction 

are predominant, the distribution will be skewed or even bimodal. As long as the pixels 

with real change are in the minority (see Fig. 7b), bias can be estimated by the mode of 

the distribution. That is, mean minus mode would then be a corrected estimation of the 

change. In the present study, bias is estimated by the following procedure: The

probabilities of each pixel of the corresponding smoothed fractional covers (i.e. 

model_general_uncorr and model_detail_uncorr) were added together and the sums 
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stratified into 20 classes. The lowest class (0.0 - 0.1) of model sums corresponds to “non-

tree/shrub” whereas the highest class (1.9 - 2.0) corresponds to “tree/forest”. Intermediate 

classes represent either partly forested areas or areas that have been deforested or areas 

where shrub encroachment occurred. Then the smoothed fractional covers of 1997 were

subtracted from the smoothed fractional covers of 2002. The distributions of the resulting 

differences were analysed separately within each of the 20 classes. As result, discrete bias 

estimations for each class were obtained. To have a continuous bias estimation the 

discrete values were smoothed by Loess regression with a span of 0.3. Bias correction 

was performed by subtracting the values from the differences between the fractional 

tree/shrub covers.

To summarize this section, the main steps of processing and the methodological 

workflow are given in Fig. 1.

3. Results

3.1. Tree layers

Visual image analysis revealed some differences between the two different tree layers in 

forest clearings and in some parts of the open forest areas of the mire. In these areas the

fractional tree/shrub covers based on the detailed tree layers (trees97_detail and 

trees02_detail) seem to be more precise. Fig. 6 a-d visualizes the difference between the 

two tree layers of both years in a typical part of the mire where small shrubs and single 

trees are present. Tree/shrub area estimation depends on the three threshold values used 

in tree layer estimation. The tree area extracted by the four layers trees97_general 
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(trees02_general) is 0.9184km2 (0.7299km2) and by trees97_detail (trees02_detail) 

0.8534km2 (0.8112km2) respectively.

Figure 6. a) CIR orthoimage with generalized tree layers of 1997 and b) of 2002, c) and d) more detailed 

tree layers, e) and f) corresponding fractional tree/shrub covers. The two circles on the left side mark areas 

with decreased tree/shrub cover due to deforestation/logging. The two circles on the right side mark 

increased tree growth / shrub encroachment.

Visual image inspection revealed that several shrubs and small single trees are still not 

extracted in the remaining open mire land.

3.2. Fractional tree/shrub covers

Two pairs of fractional tree/shrub covers per year (1997 and 2002) were produced using 

the tree layers described in section 2.5. A tree/shrub cover stratum of 0.1 - 1 (10-100%)

means that all pixels with a probability higher than 10% are assigned to the shrub/tree 

class. Fig 6.e-f) shows the five predicted tree/shrub cover strata for a typical part of the 

mire. Tree/shrub area that is previously missed by the detailed tree layers is extracted by 

dependence on the threshold of probability. Area of extracted trees/shrubs increases with 

lower probability thresholds. At the same time errors increase as well. For example, 

visual stereo image analysis revealed that a cover stratum of 10-100% also considers 

vegetation other than shrubs such as tall grass or herbs. By contrast, considering only a 

cover stratum of 0.5 – 1.0 (50-100%) leads to a significant underestimation of shrubs and 

trees in the open mire land.
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3.3 Bias estimation

Suspicion of bias arises when analysing the logistic regression lines on the variables of 

the normalized DSMs for the detailed fractional tree/shrub covers. The intercept and the 

regression coefficients are different for the two surveys (1997 and 2002). Given the well-

defined training data, the most plausible explanation for different coefficients (different 

steepness of the lines) is the different quality of the nDSM’s. Pixels of the 1997 model 

with low slope values show higher probability for tree/shrub than in the 2002 model. This 

is due to a slightly rougher surface of the nDSM in open mire land and might be a result 

of scale, quality and date and time of acquisition of the 1997 CIR aerial images.

Bias was estimated by subtracting the smoothed fractional covers and analysing the 

distribution of the differences within 20 classes of the model sums (i.e. 

model_general_uncorr and model_detail_uncorr, respectively). Distributions of model 

differences within four typical classes of model sums are displayed in Fig. 7.

Figure 7. Distribution of differences between the fractional tree/shrub covers from both surveys in four 

different classes (x). Y-axis: number of counts. a) class 0 - 0.1, b) class 0.8-0.9, c) class 1.2 - 1.3, d) class

1.8 - 1.9.

Fig. 7a shows the distribution of differences in the lowest class of model sums. The 

differences follow a normal distribution, but the mode is negative, which points to

apparent deforestation. As tree-like objects were never present in the area concerned, this 

deviation from 0 must be bias. Fig. 7b displays the distribution of differences in a class of 

model sums which corresponds to locations that were partly forested in 1997 and 2002,

or areas that meanwhile have been deforested or where shrub encroachment occurred. 
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The mode of the distribution is near 0 which can be interpreted as a small bias. There is a 

second local maximum of differences at about -0.7 that can be attributed to deforestation. 

Fig. 7c shows the distribution within a class of model sums which denotes a relatively 

dense forest in common in the two surveys. The mode of the distribution is greater than 0 

which can be interpreted as a bias (apparent density increase). The distribution is skewed 

at the negative end which can be attributed to deforestation. Fig. 7d displays the 

distribution of differences in a high class of model sums which corresponds to locations 

that were forested in both surveys. The mode of the distribution is markedly above 0 

which denotes a bias (apparent density increase).

Estimated bias, the uncorrected mean differences and the corrected mean differences (i.e. 

changes) within all of the 20 classes, are visualized in Fig. 8. The two upper curves show 

the bias when using the models based on more general or detailed tree layers. Bias is 

negative in lower classes of model sums (areas with low trees/shrub probabilities, e.g. 

grassland, open mire land). Bias arises and is positive in higher classes of model sums 

(areas with high tree/shrub probabilities such as forests). Since uncorrected models 

contain bias they indicate an apparent increase of the tree/shrub area in areas which 

correspond to approx. classes between 1.2 – 1.8. Since both corrected models (based on 

the general and detailed tree layers) indicate similar decrease of the tree/shrub areas 

(nearly congruent curves), the chosen fractional cover approach can be regarded as robust.

Figure 8. Mean differences, bias (estimated by mode) and corrected differences of smoothed fractional 

tree/shrub covers for 20 classes of model sums. Lowest class (0.0 - 0.1) of model sums corresponds to 

“non-tree/shrub” whereas the highest class (1.9 – 2.0) corresponds to “forest”. Intermediate classes 
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represent either partly forested area or areas that have been deforested or areas where shrub encroachment 

occurred.

3.4 Decrease and increase of forest area and other wooded area (1997-2002)

Changes of tree/shrub probabilities between 1997 and 2002 are summarized in Table 3.

Both the generalized and the more detailed tree layers reveal a decrease of tree/shrub 

pixel portion of -0.073 and -0.018 between 1997 and 2002 respectively. The different 

results are due to the different input parameters (minimum slope threshold, tree canopy 

area, and gap size) used for the tree layer-algorithms. One assumes that the decrease is in 

the same range in both tree layers but the increase in small trees/shrubs is detected less by

the more generalized tree layers. Also, both fractional cover approaches revealed a

decrease of tree/shrub probability in the range of -0.036 to -0.039 between 1997 and 2002

respectively. The scores of the uncorrected models are given in Table 3.

Table 3. Variations of change estimations for tree/shrub (1997-2002) as obtained by different methods.

The differences of tree/shrub probability as obtained by the corrected model (detailed 

fractional shrub/tree covers) are shown in Fig. 9. Decrease of trees and shrubs due to 

logging are displayed in red whereas increase due to shrub encroachment is displayed in 

green; non-changed areas are displayed in yellow.

Figure 9. a) CIR orthoimage 1997, b) CIR orthoimage 2002 c) corrected changes of tree/shrub probability 

of forest and other wooded areas with decrease (red), no change (yellow) and increase (green). 
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3.5 Validation

Changes of tree/shrub pixel portion between 1997 and 2002 on the digitized sample areas 

between the tree layers and the changes of tree/shrub probability of the corrected 

fractional covers is summarized in Tables 4-7. An accuracy assessment of the tree layers 

and the fractional tree/shrub covers was performed by means of statistical measures: 

kappa coefficient (K), the correct classification rate (CCR) and the correlation coefficient 

(r). For details see Congalton (1991). Both tree layers and fractional covers reveal no 

decrease/increase between 1997 and 2002 concurring with sampled no-change areas. 

Both tree layers and corrected models show a substantial decrease in tree/shrub 

probability in delineated areas where tree/shrub area declined between 1997 and 2002. 

Good information on deforestation is given by tree layer trees97_02general. Shrub 

encroachment and growth of small trees in open mire land is not or only slightly detected 

when using the generalized tree layers (+0.052). In contrast, both the detailed tree covers

(+0.490) and the models (+0.150, +0.174) show shrub encroachment (general increase of

tree/shrub probability in areas that were delineated as increase).

Results based on tree layers substantially differ depending on the threshold values used 

for their generation. Alternatively, the model based approach seems to be more robust;

the result differ only little depending on the training data used (generalized and detailed 

tree layers). Kappa, CCR and r are also only slightly different. A comparison of digitized 

samples with tree layers and fractional tree/shrub covers is given in Tables 4 - 7.

Table 4. Comparison of digitized samples with generalized tree layers.
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Table 5. Comparison of digitized samples with detailed tree layers.

Table 6. Comparison of digitized samples with corrected models based on the generalized tree layers.

Table 7. Comparison of digitized samples with corrected models based on the detailed tree layers.

4. Discussion and Conclusion

The objective of this study was to assess decrease and increase of forest area and other 

wooded area and to estimate shrub encroachment between 1997 and 2002 using 

normalized DSM data and tree layers in logistic regression models. Combining remote 

sensing data with regression analysis as it is performed in many studies for land cover 

mapping (Guisan and Zimmermann 2000; Ju et al. 2003; Mathys et al. 2006) is shown to 

be appropriate for fractional tree/shrub cover mapping and assessing changes of tree area 

in a mire biotope. The use of standard explanatory variables as already applied in other 

studies (e.g. Küchler et al. 2004; Waser et al. 2004) derived from the nDSM, proved to be 

a good approach for fractional modeling. With a fractional cover approach, subtle

changes of forest area and of other wooded area have been detected before reaching a 

discrete value which may be an advantage for mire habitat management. The present 

study reveals that different quality of the scanned CIR aerial images and the nDSMs, 

different scale and also different acquisition time from the two surveys 1997 and 2002 

caused systematic errors in the predicted values of the models which could be 
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misinterpreted as a change of tree area and could therefore not simply be ignored. In fact, 

bias proved to occur at a scale which would, without correction, making a reproducible 

statement as to whether the removal of trees and shrubs or the encroachment by growing 

bushes was predominant in the survey time impossible. Estimation and correction for bias 

is essential if any change has to be assessed by statistical modelling.

Overall, the present study reveals a decrease of forest and other wooded areas since 1997 

although shrub encroachment occurred in some parts of open mire land. This general 

decrease has two reasons: 1) most forest clearings in this region were caused by hurricane 

Lothar in 1999 and 2) selective logging of groups of trees, single trees, shrubs in open 

mire land in the frame work of the regeneration program. The difference in the corrected 

fractional tree/shrub cover indicate the magnitude of changes and spatial distribution of 

tree area between 1997 and 2002. Local experts assume that changes in the mire 

“Eigenried” may not considerably alter this sensitive biotope provided that current 

selective logging and deforestation measures will continue in the same range. Areas 

showing shrub encroachment may present a risk of disappearance of sensitive plant 

species communities by changing habitat conditions. Early detection of shrub 

encroachment is therefore essential for assessing possible changes of moisture, nutrient 

and light (e.g. drier conditions with less light and more eutrophication). Different 

environmental conditions may then lead to changes in species distribution.

Our future work will include the retrieval of the type of trees/shrubs which gives 

important information on the magnitude of growth. We also plan to compare the decrease 

and increase of forest area with new field data and to assess possible changes in species 

distribution.
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However, both the accuracy of the tree layers and the fractional tree/shrub covers 

strongly depend on the accuracy of the DSM data. Thus, DSMs derived from newly 

developed, high-quality matching methods are indispensable. The use of dense and 

accurate DSMs are absolute prerequisites in order to derive accurate topographic 

parameters which in turn can be used to derive the tree layers and the fractional 

tree/shrub covers. The existing national LiDAR DSM has small point density and only 

partly penetrates the canopy and is therefore not appropriate for accurate shrubs/tree 

detection and vegetation canopy modeling (see also a comparison of ETHZ DSM and 

LiDAR DSM with reference measurements in Baltsavias et al. 2006). Regarding the 

matching DSM, a larger side overlap could reduce occlusions and lead to better modeling 

of small openings between trees while increasing the number of image rays per 

measurement and leading to higher accuracy and reliability. Use of modern digital 

photogrammetric sensors would lead to avoidance of scanner and film problems, 

providing better radiometric quality, and enable the use of the NIR for classification, all 

factors that would result in a more accurate mapping and change detection of trees and 

shrubs. 
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Figure 1. Overview of the methodological workflow with main steps of processing.

Figure 2. Left: overview of the test site (Pixelmap © 2006 Swisstopo JD052552); right: bog and fenland, 

broad-leafed woodland and shrubs that are typical for the mire.

Figures
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Figure 3. Colour-coded matching DSM from averaging the RGB channels (left) and using only the blue 

channel (right). The right DSM shows a better modelling of tree individuals and small openings (circle) 

between trees.

210 m
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Figure 4. Detail of the 1997 (left) and 2002 (right) DSMs. The noise in the 1997 DSM is clearly visible in 

bare ground areas. Some stripes are visible in the 2002 DSM again on bare ground. Shrub encroachment in 

2002 is clearly visible on the top right.

-1.5m             0.0m          1.5m -1.5m            0.0m          1.5m

Figure 5. a)  Z component of the Euclidian distances 1997 - 2002 DSM showing clearly areas of 

deforestation and shrub encroachment. b) Z component of the Euclidian distances LiDAR DSM - 2002 

DSM. At the top and bottom, the effect of the stripes in the DSM due to film scanner miscalibration is 

visible. The orange areas at the top left are probably due to differences in image orientation between the 

two flight strips and within each strip causing discontinuities in the 2002 DSM. These areas are also visible 

in Fig. 5 a) but have less sharp boundaries due to the noise of the 1997 DSM. Due to software limitations 

regarding computer memory, the LiDAR DSM and DSM were sub-sampled to a 2.5m grid

335 m
a) b)
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Figure 6. a) CIR orthoimage with generalized tree layers of 1997 and b) of 2002, c) and d) more detailed 

tree layers, e) and f) corresponding fractional tree/shrub covers. The two circles on the left side mark areas 

with decreased tree/shrub cover due to deforestation/logging. The two circles on the right side mark 

increased tree growth / shrub encroachment.

Figure 7. Distribution of differences between the fractional tree/shrub covers from both surveys in four 

different classes (x). Y-axis: number of counts. a) class 0 - 0.1, b) class 0.8-0.9, c) class 1.2 - 1.3, d) class

1.8 - 1.9.
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Figure 8. Mean differences, bias (estimated by modus) and corrected differences of smoothed fractional 

tree/shrub covers for 20 classes of model sums. Lowest class (0.0 - 0.1) of model sums corresponds to 

“non-tree/shrub” whereas the highest class (1.9 – 2.0) corresponds to “forest”. Intermediate classes 

represent either partly forested area or areas that have been deforested or areas where shrub encroachment 

occurred.
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Figure 9. a) CIR orthoimage 1997, b) CIR orthoimage 2002 c) corrected changes of tree/shrub probability 

of forest and other wooded areas with decrease (red), no change (yellow) and increase (green). 

a) b)
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Table 1. Characteristics of the CIR aerial images

Sensor CIR aerial images 1997 CIR aerial images 2002

Type RC 30 RC 30

Acquisition date 04/08/1997 08/07/2002

Scale 1:10,000 1:5,700

Focal length 21 cm 30 cm

Spectral resolution Green: 500-600 nm

Red: 600-700 nm

Near infrared: 750-1000 nm

Scan pixel size 15 μm 15 μm

Ground pixel size 15 cm 8.5cm

Radiometric resolution 8 bit 8 bit

Overlap Forward: 75% Forward: 75%

Side: 30%

Table 2. Overview of the five explanatory variables (derived from nDSM) used to generate the fractional 

shrub/tree covers.

Name Derivation

curvature curvature of the surface at each cell center 

(3x3 window)

plan curvature of the surface perpendicular to the 

slope direction, referred to as the planform 

curvature (3x3 window)

prof rate of change of slope for each cell, curvature 

of the surface in the direction of slope (3x3 

window)

slope rate of maximum change in z value from each 

cell

top assessment of topographic position (4 classes: 

ridge, slope, toe slope and bottom), the 

resulting grid displays the most extreme 

deviations from a homogenous surface

Tables
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Table 3. Variations of change estimations for tree/shrub probability (1997-2002) as obtained by different 

methods.

Differences 2002 - 1997 Description Mean change of 

tree/shrub pixel 

portion

Trees97_02general Generalized tree layer 2002 - 1997 -0.073

Trees97_02detail Detailed tree layer 2002 - 1997 -0.018

Mean difference

of tree probability

Model_general_uncorr uncorrected modeled change (based on 

general tree layers), bias included

-0.029

Model_detail_uncorr uncorrected modeled change (based on 

detailed tree layers), bias included

-0.016

Model_general_corr Corrected modeled change (based on 

general tree layers) 

-0.039

Model_detail_corr Corrected modeled change (based on 

detailed tree layers) 

-0.036

Table 4. Comparison of digitized samples with generalized tree layers by means of statistical measures: 

classification rate (CCR), Kappa (K) and correlation coefficient (r).

Generalized tree layers (trees97_02general)

dec. eq. inc. ∑

dec. 44258 12256 40 56554
eq. 14 63676 0 63690
inc. 6796 75190 11708 93694
∑ 51068 151122 11748

CCR 0.560

К 0.591

Digitized 
samples

r 0.626

Mean change 
of tree / shrub
pixel portion

-0.782 -0.000 +0.052
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Table 5. Comparison of digitized samples with detailed tree layers.

Detailed tree layers (trees97_02detail)

dec. eq. inc. ∑

dec. 32936 22862 756 56554
eq. 16 63654 20 63690
inc. 1792 44178 47724 93694
∑ 34744 130694 48500

CCR 0.675

К 0.519

Digitized 
samples

r 0.696

Mean change 
of tree / shrub
pixel portion

-0.569 +0.000 +0.490

Table 6. Comparison of digitized samples with corrected models based on the generalized tree layers.

Model_general corr.

dec. eq. inc. ∑

dec. 33206 20454 5788 56554
eq. 190 63270 230 63690
inc. 3314 61146 29234 93694
∑ 36710 144870 32358

CCR 0.588

К 0.612

Digitized 
samples

r 0.572

Mean diff. of 
tree / shrub
probability

-0.518 -0.000 +0.150
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Table 7. Comparison of digitized samples with corrected models based on the detailed tree layers.

Model_detail corr.

dec. eq. inc. ∑

dec. 33970 19968 2616 56554
eq. 180 63320 190 63690
inc. 3472 60656 29566 93694
∑ 37622 143944 32372

CCR 0.593

К 0.620

Digitized 
samples

r 0.582

Mean diff. of 
tree / shrub
probability

-0.562 -0.000 +0.174




