Testing the importance of a common ectomycorrhizal network for dipterocarp seedling growth and survival in tropical forests of Borneo

Francis Q. Brearley 1,2,+*, Philippe Saner 3,+ Ayuho Uchida 4, David F. R. P. Burslem 4, Andy Hector 3,5, Reuben Nilus 6, Julie D. Scholes 1 and Simon Egli 7

1 Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK; 2 School of Science and the Environment, Manchester Metropolitan University, Chester Street, UK; 3 Department of Evolutionary Biology and Environmental Studies, University of Zürich, Zürich, Switzerland; 4 School of Biological Sciences, University of Aberdeen, Aberdeen, Scotland, UK; 5 Department of Plant Sciences, University of Oxford, Oxford, UK; 6 Forest Research Centre, Sabah Forestry Department, Sandakan, Sabah, Malaysia; 7 Swiss Federal Research Institute for Forest, Snow and Landscape, Birmensdorf, Switzerland

+ = Joint first authors

*Corresponding author. Email: f.q.brearley@mmu.ac.uk

Abstract

Background: Connections between mature trees and seedlings via ectomycorrhizal (EcM) hyphal networks existing in dipterocarp-dominated tropical rain forests of South-East Asia could have strong implications for seedling growth and survival and the maintenance of high diversity in such forests.

Aim: To test whether EcM hyphal network connections are important for the growth and survival of dipterocarp seedlings.

Methods: We conducted four independent experiments that prevented contact of experimental seedlings with an EcM network by using a series of fine meshes and/or plastic barriers. We measured the growth and survival (and foliar δ13C in one
experiment) of seedlings of six dipterocarp species over intervals ranging from 11 to 29 months.

Results: Seedling growth (diameter, height or leaf number) was unaffected by exclusion from the EcM network in three experiments and there were no differences in foliar $\delta^{13}C$ values in the fourth. Seedling survival was reduced following exclusion from the EcM network in one experiment. Our results give little support to the hypothesis that dipterocarp seedlings growing in the shaded forest understorey benefit from being connected, through a common EcM network, to surrounding trees.

Conclusions: We suggest that our negative results, in contrast to studies conducted in low diversity boreo-temperate or tropical forests, are due to these high diversity forests lacking host species-specific EcM fungi, and therefore providing little opportunity for adaptive support of seedlings via hyphal networks.

Keywords: Borneo, dipterocarps, ectomycorrhizas, mycorrhizal networks, source-sink relationships
Introduction

Mycorrhizas are a symbiotic association between specialised root-inhabiting fungi and the roots of living plants. The plant provides the fungus with carbon derived from photosynthesis, and, in return, the fungus may improve the nutrient uptake, growth, water relations, pathogen and heavy metal resistance of the plant (van der Heijden and Sanders 2002; Smith and Read 2008 and references therein). Although the majority of tropical trees form arbuscular mycorrhizal (AM) associations, an important minority form ectomycorrhizal (EcM) associations including members of the Dipterocarpaceae (Brearley 2012). Dipterocarp trees dominate the forests of South-east Asia (Slik et al. 2003, 2009), and there are more than 250 species on the island of Borneo alone (Ashton 2004). Their seeds are produced every 3-8 years in mast-fruiting events (Curran et al. 1999; Sakai et al. 2006; Brearley et al. 2007a) after which they germinate and become colonised rapidly by EcM fungi (Lee and Alexander 1996). The main method of colonisation is from the hyphae of fungi already present and forming network in the soil radiating out from roots of adjacent adult trees (Alexander et al. 1992) – during the process of EcM colonisation seedlings become ‘connected’ to this network. After a mast-fruiting event, dipterocarp seedlings are found at high densities close to parent trees forming seedling banks where they are limited in their growth and survival in the shaded forest understorey.

Numerous studies have shown the existence of EcM networks in various forest ecosystems with shared fungal species linkages between adults and seedlings (Beiler et al. 2010; Diédhiou et al. 2011; Michaëlla Ebenye et al. in press) and Connell and Lowman (1989) hypothesised that the dominance of dipterocarps in South-east Asian lowland evergreen rain forests was linked to the ability of newly germinated seedlings to link into this EcM-mediated resource acquisition network. Studies conducted in
lowland tropical forests of Cameroon found that isolation of seedlings of *Paraberlinia bifoliolata* (Leguminosae) from roots and EcM fungi reduced seedling biomass and survival (Onguene and Kuyper 2002), and a similar study in Guyana showed that *Dicymbe corymbosa* (Leguminosae) had reduced growth and survival when isolated from an EcM hyphal network using fine meshes (McGuire 2007). Contrasting with these findings, seedlings of only one of three Caesalpinioideae legume species in Cameroon had a higher growth rate in the presence of adult trees and their associated roots and EcM fungi (Newbery et al. 2000). The cause of this difference in outcome between studies in different locations is unknown, and further research is required to extend the range of environments where this is examined including both high and low diversity sites. Whether the connection into an EcM hyphal network has implications for the high species richness observed in dipterocarp-dominated tropical rain forests remains unsolved, and clearly, then, it is important to improve our knowledge of the role of EcM networks in facilitating the regeneration of tropical forest trees.

The benefits of being connected into this hyphal ‘wood-wide web’ have been reported from boreo-temperate forests (Simard et al. 2012). For example, carbon has been shown to move between plants or seedlings that form a hyphal network in a 'source-sink' fashion whereby plants that are photosynthesising at a rapid rate, such as those under higher irradiance, pass carbon to those that have lower rates of photosynthesis, such as those which are strongly shaded (Francis and Read 1984; Simard et al. 1997; Klein et al. 2016). Support via an EcM hyphal network may therefore be beneficial for the survival of seedlings that are growing below the light compensation point in shaded understorey environments. Francis and Read (1984) were the first to show that carbon could move between plants via an AM hyphal network, but not until the milestone study of Simard et al. (1997) was net movement of carbon in
EcM systems shown: they found that 6.6% of carbon fixed in *Betula papyrifera* (Betulaceae) was transferred to *Pseudotsuga menziesii* (Pinaceae) and that 45% of this transferred carbon was found in the plant shoots (*i.e.* not fungal structures). Most recently, Klein et al. (2016) showed transfer of carbon from *Picea abies* (Pinaceae) adult trees to roots of adjacent EcM species. However, the ecological importance of this network has been under considerable debate as inter-plant carbon transfer is a complex and variable process. From a phytocentric view, there is a challenge in explaining how this process could be adaptive as it is only likely to be selected for if adults are transferring beneficial compounds, such as carbon, to kin. If considered mycocentrically, however, then the fungus will simply be moving compounds to where they are most required at a given point in time.

EcM colonisation in shade tolerant dipterocarps has been shown to improve the growth of seedlings under nursery conditions although far fewer studies have shown a similar benefit under natural field conditions (Brearley 2011, 2012). We report four independent studies on the island of Borneo, using seedlings of six dipterocarp species with contrasting ecological characteristics. We hypothesised that seedlings that were experimentally excluded from an EcM network would display slower growth rates and reduced survival than seedlings that were connected to the network.

Materials and methods

Rationale

In the first three experiments reported, we planted seedlings surrounded by meshes of various pore size with the intention of creating a series of barriers to in-growth by plant roots and fungal hyphae. Therefore, the control treatments allowed free access to fine roots and fungal hyphae, a large mesh treatment had a fine pore-size mesh (35-50 µm)
to prevent the access of fine roots but allow access by fungal hyphae and a small mesh
treatment had a very fine pore-size mesh (0.5-1.0 µm) and/or a severing treatment to
prevent access to both roots and fungal hyphae. It was assumed that seedlings in which
fungal hyphae were allowed access through the meshes had the potential to become
colonised by hyphae present in the soil outside the meshes, and therefore connect into
the EcM hyphal network, whereas those seedlings in the treatments where hyphal access
was restricted would only be able to form EcMs \textit{via} spores or hyphal fragments present
within their enclosed rooting volume, and would therefore not connect into the EcM
network outwith the meshes. This approach has been used successfully to control
mycorrhizal colonisation and partition of soil respiration fluxes in previous experiments
(Johnson et al. 2001; Heinemeyer et al. 2007; Vallack et al. 2012). A number of the
seedlings were raised in a nursery before being transplanted into the forest and, based
on prior observations (Brearley 2003), we are confident they were all colonised by EcM
fungi, albeit those more common of nursery conditions (\textit{e.g.} Brearley 2006; Brearley et
al. 2003, 2007b; Saner et al. 2011). Whilst ‘priority effects’ of EcM colonisation have
often been found to affect subsequent competitive replacement by other EcM species
(Kennedy et al. 2009), replacement of nursery EcMs with those present in forest soil has
been seen within six months for studies in Peninsular Malaysia (Chang et al. 1994,
1995) and, given that the length of all our studies was over at least 11 months, we do
not consider this to have affected our results.

In one experiment we tested whether carbon was measurably transferred from
adult trees to seedlings through an EcM hyphal network by trenching the seedlings in
order to isolate them from the EcM network and then determining the δ^{13}C values of
newly produced leaves. This approach is based on the fact that canopy leaves have a
less negative δ^{13}C signature than seedlings due to differences in the atmospheric-to-
intercellular carbon dioxide ratio (O'Leary 1988; Farquhar et al. 1989) and the isotopic signature of the source carbon dioxide in the ambient air taken up for photosynthesis (Medina and Minchin 1980; Medina et al. 1986, 1991; Buchman et al. 1997). For example, if the isotopic difference between adult trees and seedlings were 5‰, using a two-source mixing model, receipt of 10% of carbon by seedlings from adult trees would result in those connected to the EcM network having a foliar $\delta^{13}C$ value 0.5 ‰ closer to adults than trenched seedlings.

Study species

Six dipterocarp species (Table 1) were selected, based on their differences in shade tolerance and maximum growth rates (Experiments 1-3), edaphic preferences (Experiment 3), and on their availability at the start of the experiments (Experiments 1-4).

Experiment 1. EcM-network exclusion and fungicide addition effects on two dipterocarp species

This experiment was carried out in the northern part of the Kabili-Sepilok Forest Reserve, on alluvial soils (5° 52’ N, 117° 56’ E; Fox 1973; Nilus 2004). Four plots of ca. 7 m x 7 m were cleared of the understorey vegetation and some smaller trees to reduce heterogeneity in the light environment within and between plots. Six-month-old seedlings of *Hopea nervosa* and *Parashorea tomentella* obtained from the INFAPRO nursery, Danum Valley, Sabah that had been potted in forest-derived soil (see Saner et al. 2011 and Paine et al. 2012a for nursery conditions), were planted into the four plots in March 2000. In each plot, 30 seedlings of each of the two species were randomly allocated to planting locations ca. 50 cm apart. Three treatments and two controls were
applied to the seedlings: (1) Control: no meshes were used, fungal hyphae and other
roots could fully interact with the planted seedling; (2) Sub-Control: a 1 mm pore-size
polyester mesh cylinder was installed around the seedling; the aim of this mesh was to
attempt to provide some rigidity and to protect the smaller pore-sized meshes in the
other treatments from larger soil invertebrates; (3) Root exclusion (-R): one layer of 35
µm pore-size nylon mesh (within the 1 mm pore-size polyester mesh cylinder) was
installed around the seedlings to allow connection to a mycorrhizal hyphal network; (4)
Root and mycorrhizal exclusion (-RM): two layers of 0.5 µm pore-size nylon mesh
(within the 1 mm pore-size polyester mesh cylinder) were installed around the
seedlings; the cylinders were twisted slightly every four weeks to break any hyphal
connections that might have occurred through the meshes; (5) Fungicide (-RM+F): as
the -RM treatment but with the addition of Mancozeb fungicide (Bio-Dithane 945, PBI
Home & Garden Ltd., Enfield, Middlesex, UK) bi-weekly at a rate of 0.08 g per
seedling in 50 ml of water to control the growth of EcMs on the seedling roots (Brearley
2003). All the mesh barriers were sewn into cylinders of 7 cm diameter with a lip of 2
cm above ground to prevent hyphal entry and dug into the soil to a depth of 25 cm using
an auger to create a hole; they remained open at the bottom. All meshes were obtained
from, and sewn by, Plastok Associates Ltd. (Birkenhead, Wirral, UK). Apart from the
-RM+F treatment all other treatments were given 50 ml of water bi-weekly to control
for the addition of water with the fungicide. Other than this bi-weekly fungicide
solution or water addition, the seedlings were given supplemental water twice weekly
for the first month following planting. Leaf litter and twigs lying across the meshes
were removed at monthly intervals to prevent fungal hyphae entering the cylinders via
this potential pathway. Other vegetation was hand-weeded from the plots throughout the
experimental period.
Experiment 2. EcM-network exclusion and distance to adult tree effects on two dipterocarp species

This experiment was conducted in the Malua Forest Reserve (5° 05’ N, 117° 38’ E) that was selectively logged for timber in the 1980s (Marsh and Greer 1992). Twenty large trees (mean dbh = 69.7 ± SD 15.1 cm) of either Dryobalanops lanceolata or Shorea parvifolia were chosen within the Sabah Biodiversity Experiment (Hector et al. 2011; Saner et al. 2012). Trees were only selected if they were among the largest trees and no other large dipterocarp or Fagaceae trees were within 15 m of the plots to ensure that the EcM network of the focal tree was closest to the planted seedlings. At every focal tree, one plot (ca. 1.5 m x 2 m) was cleared of understorey vegetation to reduce within and between plot heterogeneity in the light environment under the tree canopy (2-4 m away from the trunk) and one plot was established and cleared of understorey vegetation outside the tree canopy (15-17 m away from the trunk), based on the assumption that the tree canopy approximately reflected the extension of the rooting system (Baillie and Mamit 1983; Katayama et al. 2009). One control and two treatments were applied to the seedlings: (1) Control: no mesh or tube was used, fungal hyphae and other roots could fully interact with the planted seedling; (2) Root exclusion (-R): seedlings were planted into a PVC tube (15 cm diameter x 70 cm depth) covered at the bottom with 50-µm pore-size mesh allowing fungal hyphae to grow into the tube; (3) Root and mycorrhiza exclusion (-RM): seedlings were planted into a PVC tube as above but with a 1-µm pore-size mesh to prevent the entry of fungal hyphae. The meshes were made of monofilament PET (Sefar PETEX, Heiden, Switzerland) and were glued between the bottom of the PVC tube and an additional PVC ring (15 cm diameter x 5 cm depth) with silica and aluminium tape. In every plot, 12 seedlings were planted at a
spacing of ca. 50 cm and dug into the soil to a depth of 70 cm. Six seedlings were the same species as the focal tree and six seedlings were of the other tree species. All seedlings were raised in a local nursery at the Malua Field Station, Malua Forest Reserve, Sabah, with conditions similar to those at the INFAPRO nursery noted earlier, and ca. 6 months old and 0.5 m tall when planted into the field. Seedlings were randomly allocated and planted in September 2006. Seedlings were watered once at the beginning of the experiment. Leaf litter and twigs lying across the meshes were removed at monthly intervals to prevent fungal hyphae entering the cylinders. Other vegetation was hand-weeded from the plots throughout the experimental period. An index of light interception (% of canopy openness at the plot level) was measured at the beginning, middle (6 months) and end (11 months) of the experiment, using a Spherical Densiometer Model A.

Experiment 3. EcM-network exclusion and soil type effects on four dipterocarp species

This experiment was carried out in the northern and central parts of Kabili-Sepilok Forest Reserve on two contrasting soil types (Nilus 2004; Dent et al. 2006). Ten understorey plots of ca. 5 m x 5 m were chosen within both the sandstone and the alluvial soil types respectively, and understorey vegetation cleared to reduce heterogeneity in the light environment within and between plots. Within each plot, seedlings of *Shorea beccariana*, *S. multiflora* (both sandstone soil specialists), *Dryobalanops lanceolata* and *Parashorea tomentella* (both alluvial soil specialists) were planted in April 2003 at an equal spacing of ca. 1 m (seedlings were grown from seeds collected within the Kabili-Sepilok Forest Reserve during the 2002 mast-fruiting event and were ca. 6 months old when transplanted). They were subjected to three treatments and one control: (1) Control: no tube or mesh was used, fungal hyphae and
other roots could fully interact with the planted seedling; (2) Sub-Control: seedlings were planted in PVC tubes of 15 cm in diameter and 35 cm in depth that were open at the bottom (with 5 cm above the soil surface). Three rectangular windows of 7 cm width x 20 cm depth were made in the tube, allowing both mycorrhizal hyphae and plant roots to penetrate. Six small holes (of 5 mm diameter) were cut in the tubes at the level of the soil surface to aid in drainage. (3) Root exclusion (-R): seedlings were planted in PVC tubes as above and the windows were covered in 35 µm pore-size mesh (Plastok Associates Ltd., Birkenhead, Wirral, UK), allowing only mycorrhizal hyphae to penetrate. (4) Root and mycorrhizal exclusion (-RM): Seedlings were planted in PVC tubes but there were no rectangular windows in the tubes and a knife was used to cut around the edges of the tubes once per week to sever any fungal hyphae that might have entered through the small drainage holes. Once planted, seedlings were not given additional water and there were no on-going manipulations (such as removal of leaf litter and twigs lying across the piping or weeding of vegetation). The two sandstone species (*Shorea beccariana* and *S. multiflora*) grown in the alluvial plots were harvested in July 2004 (after 15 months) due to high mortality rates; all other seedling/soil type combinations were followed for 29 months. An index of light interception (% of canopy openness) was measured at the beginning of the experiment with hemispherical photography using a Minolta X-700 camera with a Rokkor 7.5 mm fisheye lens; images were subsequently analysed using Gap Light Analyser (Frazer et al. 1999).

Experiment 4. EcM-network effects on carbon isotope ratios on one dipterocarp species

Twenty areas with seedling banks of *Shorea multiflora* were selected in March 2000 in two separate areas of Kabili-Sepilok Forest Reserve. Ten areas were in the vicinity of research plots in the northern part of the Reserve and another ten were along a trail
running north-south through the Reserve. In each area, a circular plot of 68.5 cm diameter was trenched to a depth of 5-10 cm (varying with the local microtopography) and a plastic barrier was placed in the trench. An equally-sized and shaped plot (situated between 0.45-3.2 m from the trenched plot; mean: 1.25 m) was marked out using a circle of plastic, lain on the forest floor but remained otherwise unaltered in order to act as a control. Each plot contained a mean of 13.5 (± 4.9 SD) seedlings of which 11.8 (± 4.7 SD) were *Shorea multiflora*. The number of leaves and height of each seedling was recorded so that after 13 months, one leaf that had been produced during that interval was randomly selected from one seedling within each plot. The leaves were dried at 50° C for at least one week, ground in liquid nitrogen and a sample of 1 mg was analysed for δ¹³C (PDZ Europa ANCA-GSL preparation module connected to a 20-20 isotope ratio mass spectrometer, Northwich, Cheshire, UK). Isotope ratios were calculated as: \[\text{δ}_\text{13C} (\%) = (R_{\text{sample}}/R_{\text{standard}} - 1) \times 1000 \] where R is the isotope ratio of \(^{13}\text{C}/^{12}\text{C}\) of either the sample or the standard (Pee Dee Belemnite). In addition, one leaf was collected from the canopy of eight large individuals of *Shorea multiflora* (40-45 m tall; C. R. Maycock pers. comm.; R. N. Thewlis pers. comm.) and analysed for δ¹³C as above.

Seedling measurements

Non-destructive measurements of seedling height (to the apical meristem), basal diameter and leaf number as well as survival rate were taken periodically. In Experiment 1, six measurements were taken over 24 months (March 2000-February 2002), in Experiment 2, three measurements were taken over 11 months (September 2006-August 2007), in Experiment 3, 10 measurements were taken over 29 months (April 2003-September 2005). Seedlings that died or were severely damaged by
mammals or tree/branch falls, where the meshes were damaged or where there was poor
drainage and the tubes became waterlogged (Experiment 2 only) were removed from
the growth analyses. For the individual growth analyses a total of n=233 (Experiment 1),
n=267 (Experiment 2), and n=317 (Experiment 3) observations were included. Only
seedlings grown under dark conditions (<5% canopy openness) were included in the
analysis for Experiment 2.

Statistical analyses

Based on an initial screen, we assumed linear growth, as individual seedlings showed
relatively constant increases in diameter, height and leaf number over time. The linear
model was fitted for every seedling and the individual regression slope (r) extracted.
The slopes were then standardised by dividing by the mean height, diameter or leaf
number of the last measurement, termed in this paper as relative growth rate (Paine et al.
2012b). A linear mixed-effects model for each study was carried out in R 3.2.0 (R
Development Core Team 2015), using the nlme library (Pinheiro and Bates 2000).
Treatment and species (all experiments), plus planting distance (Experiment 2), or
habitat (soil) type (Experiment 3) were treated as fixed effects; as we were specifically
interested in selected species effects they were included as fixed, rather than random,
effects, plot was included as a random effect. Unequal variance was observed and
accounted for by defining a linear increase in variance with time (Experiment 1) or light
level by species (Experiments 2 and 3). In the case of Experiment 2, adding
conspecificity/heterospecificity did not significantly improve the fit of the model (in all
cases: \(\chi^2 < 16.5, P > 0.15 \)) so this variable was removed for ease of comparison with the
other studies. Analysis of survival rates was made on binomial count data of seedlings
that survived compared to those that died, including the same structure of fixed and
random effects as outlined above, with the function \textit{glmer()} and a binomial distribution in the \textit{lme4} library (Bates et al. 2015). The statistical tests are reported based on the analysis of relative growth rates for all three non-destructive measurements (height, diameter and leaf number) and for survival, but for simplicity only the increase in diameter is shown graphically (for additional graphical representation of all non-destructive measurements see supplementary material). We present the \textit{F}-test or Chi-square (survival analysis) statistic with associated \textit{P}-values obtained through the \textit{anova()} command and \textit{t}-test statistic with associated \textit{P}-values obtained through the \textit{summary()} command for main effects and their interactions as outlined in Tables 2, 4 and 5. Note that with non-orthogonal designs in complex models the outcome from the \textit{anova()} command and the \textit{summary()} command may differ slightly (Hector et al. 2010; Hector 2015). Experiment 4 was analysed using a straightforward one-way ANOVA to compare foliar δ^{13}C values between large trees and trenched and untrenched seedlings.

Results

Experiment 1

Diameter growth. For relative diameter growth rate, significant main effects of treatment and species were observed (treatment: $F_{4,220}=12.8$, $P<0.0001$; species: $F_{1,220}=19.2$, $P<0.001$) and there was also a significant interaction between treatment and species ($F_{4,220}=2.7$, $P<0.05$). For \textit{Hopea nervosa}, fungicide addition (-RM+F) significantly reduced growth by 40% (mean \pm 95% CI: 5-75%) compared to the seedlings of the root exclusion treatment (-R) ($t_{4,220}=2.2$, $P<0.05$), however for \textit{Parashorea tomentella}, fungicide addition (-RM+F) did not affect diameter growth rate. In contrast to our hypothesis, seedlings of \textit{Parashorea tomentella} in the root and mycorrhizal exclusion treatment (-RM) grew significantly ($t_{4,220}=3.1$, $P<0.01$) faster
than seedlings of the root exclusion treatment (-R) (mean ± 95% CI: 38% ± 19-50%) (Figure 1 and Table 2, supplementary material Figure S1).

Height growth. There was no effect of the treatments on height growth rates but *Parashorea tomentella* showed a significantly faster relative height growth rate than *Hopea nervosa* ($F_{1,220}=4.1$, $P<0.05$) (Table 2, Figure S2 a and b).

Leaf growth. Relative growth rate in leaf number showed significant main effects of the treatment ($F_{4,220}=5.0$, $P<0.001$) and species ($F_{1,220}=116.3$, $P<0.0001$). *Hopea nervosa* seedlings grew significantly faster those of *Parashorea tomentella* ($t_{1,220}=6.0$, $P<0.0001$). No significant treatment effects were observed for *Parashorea tomentella*, however for *Hopea nervosa*, control seedlings grew significantly faster than both seedlings of the root (-R) and mycorrhizal exclusion (-RM) treatment ($t_{4,220}=2.2$, $P<0.05$ and $t_{4,220}=2.9$, $P<0.01$ respectively). Fungicide addition significantly reduced growth compared to control seedlings ($t_{4,220}=4.2$, $P<0.0001$) (Table 2, Figure S3 a and b).

Survival. No effects of the treatments were observed for seedling survival but seedlings of *Hopea nervosa* showed a significantly greater survival rate compared to *Parashorea tomentella* ($\chi^2=6.4$, $P=0.01$) (Tables 2 and 3).

Experiment 2

Diameter growth. There was no effect with respect to either the treatment or the planting distance from the large trees but *Dryobalanops lanceolata* seedlings showed
significantly greater relative diameter growth rates than *Shorea parvifolia* seedlings

\(F_{1,238}=10.2, P<0.01;\) Figure 2 and Table 4, Figure S4).

Height growth. There was no effect of connection to an EcM network or species on height growth. However, the root exclusion (-R) treatment of *Dryobalanops lanceolata* showed a 73% increase in height growth rate when planted close to a large tree compared to those that were planted away from the tree \(t_{1,238}=2.5, P<0.05\) (Table 4, Figure S5 a and b).

Leaf growth. Leaf growth in *Shorea parvifolia* was significantly reduced in the root and mycorrhizal exclusion treatment (-RM) compared to the root exclusion (-R) treatment \(t_{2,238}=2.4, P<0.05\) (Table 4, Figure S6 a and b).

Survival. A significant treatment effect \(\chi^2=13.3, P=0.001\) was found, as seedlings with the root and mycorrhizal exclusion treatment (-RM) showed a lower survival rate than the root exclusion (-R) treatment and the control seedlings. Seedlings of *Dryobalanops lanceolata* showed a significantly higher survival rate compared to *Shorea parvifolia* \(\chi^2=4.4, P<0.05\) (Tables 3 and 4).

Experiment 3

Diameter growth. A significant interaction between treatment and soil type \(F_{3,276}=2.7, P<0.05\) and between species and soil type \(F_{3,276}=5.4, P<0.01\) was found. Seedlings with the root and mycorrhizal exclusion treatment (-RM) of three species (*Parashorea tomentella, Shorea beccariana* and *S. multiflora*) grew faster in the sandstone soil type compared to seedlings with only the root exclusion treatment (-R). Seedlings of
Dryobalanops lanceolata with the root exclusion treatment (-R) grew marginally faster on the alluvial soil type ($t_{1,285}=1.7, P<0.10$) and also showed more rapid growth compared to seedlings with the root and mycorrhizal exclusion treatment (-RM) ($t_{1,285}=2.2, P<0.05$) (Figure 3 and Table 5, Figure S7).

Height growth. Seedlings of all four dipterocarp species showed significantly different height growth rates ($F_{3,276} = 3.6, P<0.05$). Parashorea tomentella seedlings with the root exclusion treatment (-R) grew faster on the sandstone soil type ($t_{1,276}=2.1, P<0.05$) (Table 5, Figure S8 a and b).

Leaf growth. A significant interaction between species and soil type was observed for relative leaf growth rates ($F_{3,276} = 4.7, P<0.01$). Dryobalanops lanceolata seedlings grew significantly faster on the alluvial compared to the sandstone soil type ($t_{1,276}=2.0, P<0.05$); for all other species there were no differences between the soil types (Table 5, Figure S9 a and b).

Survival. A marginal species effect ($\chi^2=7.2, P<0.10$) and a significant soil type effect ($\chi^2=6.0, P=0.01$) were found, however no effect of the treatments was observed after 15 months (Tables 3 and 5). Notably, the sandstone specialists Shorea beccariana and S. multiflora showed lower survival rates on alluvial soil but the species by soil type interaction was not significant.

Experiment 4

There was no difference between the foliar δ^{13}C values of seedlings grown in trenched (-35.05‰ ± 0.22 SE) or untrenched (-35.00‰ ± 0.22 SE) plots but both were
significantly more negative than the value of -30.31 ± 0.34 SE obtained from the
canopy leaves of large trees ($F_{2,45}=79.06, P<0.001$). No effect of the treatment (trenched
vs. untrenched) on seedling survival rate was observed (Table 3).

Discussion
Several studies have addressed the benefits to seedlings of tropical forest trees of being
in contact with EcM hyphae radiating out from tree roots (Alexander et al. 1992;
Yasman 1995; Newbery et al. 2000), but few have tested the importance of
incorporation into a common EcM network under field conditions. Two independent
prior studies by Onguene and Kuyper (2002) and McGuire (2007) reported significant
increases in seedling mass (35%) and height growth (73%) respectively, that they
related to incorporation into the EcM networks of Caesalpinioideae trees in studies in
Cameroon and Guyana, respectively. In contrast, the key result from our analysis
across four complementary experiments with dipterocarps in South-east Asia is that
there are minimal effects of experimentally imposed treatments that alter seedling
incorporation into an EcM hyphal network on measures of dipterocarp seedling growth
in understorey conditions. Only two growth measures (the number of leaves of *Shorea
carvifolia* in Experiment 2 and the diameter of *Dryobalanops lanceolata* in Experiment
3) suggested any importance of an EcM hyphal network. There was some evidence that
exclusion from the EcM network reduced seedling survival, as, in Experiment 2,
seedling survival was lower in the –RM treatment compared to the –R treatment and the
control, although there is the possibility that this was due to waterlogging. In our
combined studies we thus did not detect any benefit to seedlings from being connected,
through a common EcM network, to surrounding mature trees.
We suggest that the lack of any effect on seedling growth of being connected to an EcM network, in contrast to boreo-temperate forests (Simard et al. 2012) and low diversity tropical forest (McGuire 2007) is because our lowland dipterocarp forest study sites have high tree diversity and low species preference of EcM fungi. Peay et al. (2015) showed ‘extreme host generalism’ of EcM fungi in similar tropical forests in northern Borneo and it has been found that there is little evidence for host preference by EcM fungal species in other tropical forests with high diversity of trees and a substantial proportion of EcM trees (Tedersoo et al. 2010; Diédhiou et al. 2010; Smith et al. 2011).

If considered from a phytocentric perspective, an absence of host-specific EcM associations removes the selective advantage of supporting seedlings via an EcM hyphal network because there can be no guarantee that the supported seedling would be conspecific kin.

Overall, the majority of measurements showed no effect (positive or negative) of inclusion into an EcM network on seedling growth. However, in some cases, experiment-specific findings argue for species-specific growth patterns, sometimes even across the experiments. *Parashorea tomentella* seedlings in Experiments 1 and 3 showed increased growth rates when isolated from a common EcM network, suggesting that EcM networks could even have detrimental effects on seedling growth and survival. Two additional species (*Shorea beccariana* and *S. multiflora*) showed this effect in Experiment 3 but only on the sandstone soil type. This result may not be entirely related to an EcM network but in this case we hypothesise that providing exclusive access to EcM hyphae associated with the seedlings to the rooting space inside the mesh tubes prevented competition with hyphae from outside. It could also indicate that the artificially induced limitation of root competition over scarce resources could be
directly beneficial for seedling growth (Coomes and Grubb 2000). Furthermore, there
was some evidence in Experiment 1 that fungicide addition limited diameter and leaf
growth in *Hopea nervosa*, but not in *Parashorea tomentella*. Fungicide addition
reduced the growth rate of this one species even though there was no significant
reduction in EcM colonisation (Brearley 2003). Clearly, the application of fungicide
will have additional effects other than simply reducing EcM colonisation such as effects
on soil nutrient status and impacts on pathogenic fungal populations (Newsham et al.
1994; Brearley 2003; Teste et al. 2006). In a similar experiment under high light
conditions (gaps), Brearley (2003) found that fungicide addition did reduce EcM
colonisation but this had a greater impact on seedling nutrient status than on seedling
growth. Other aspects of our experimental manipulations that may not have created
seedlings that were entirely disconnected from an EcM network include the depth of
barriers that were variable among experiment designs (*i.e.* possibly too shallow in
Experiment 4) and their open-bottomed nature in some experiments that might have
allowed colonisation by EcM hyphae from deeper soil layers (Pickles and Pither 2014).
In addition, there is the possibility of confounding the experimental treatments with
colonisation by different EcM fungal species; seedling roots isolated from the EcM
network would be more likely to be colonised by spore-forming fungi (and perhaps
retain initial greenhouse colonising fungi for longer) whereas those connected to the
EcM network would be more likely to become colonised via hyphal connections.
However, despite the potential for priority effects (Kennedy et al. 2009), there is a rapid
turnover of the EcM community on dipterocarp seedlings (Chang et al. 1994,1995; Lee
and Alexander 1996). Indeed, it would have been highly beneficial to have determined
the EcM fungi present on the seedlings’ roots in each of the treatments (both at the
beginning and end of the experiments), in addition to those on adult trees, to provide
additional support for the efficacy of our experimental manipulations, as well as comparing our different experimental designs. Importantly, it would also provide support for our hypothesis of low EcM host specificity and this should be the key target of future research.

Whilst we do not question the benefit to seedlings coming into contact with EcM hyphae already present in the soil allowing them to rapidly form EcM associations (Alexander et al. 1992), we did not find any importance of the EcM network for growth of seedlings although survival was affected in one experiment. Whilst the main mechanism through which connections to an EcM network have been hypothesised to benefit seedlings is the provisioning of carbon for seedling growth in low light environments, it could be questioned whether incorporation into an EcM network provides other benefits that we have not measured. These could include improved resistance to herbivores (Booth 2004), drought tolerance through hydraulic uplift (Egerton-Warburton et al. 2007; Bingham and Simard 2011), or access to nutrients being taken up from a larger volume of soil - possibly being more important where light is less limiting. Bingham and Simard (2011) found a greater importance of an EcM network under drought conditions; our sites rarely experience drought but it could be informative to test the effect of EcM networks under an experimentally induced drought or along a climatic gradient. Under very low light conditions, such that light was highly limiting to growth (i.e. below the light compensation point), seedling survival is arguably more important than seedling growth in determining future community composition. In our experiment, light levels were above the light compensation point for seedling growth (Eschenbach et al. 1998) such that growth was a more relevant measure than survival although we did see some suggestions that the EcM network was
important for seedling survival. We altered light conditions by removal of some vegetation - this might have influenced our results but as the majority of these would have been AM species the impact of this is considered minor. An isotope labelling study \(^{13C}\) would be the next step to truly confirm if this lack of importance of an EcM hyphal network is indeed the case although, clearly, this is logistically challenging (Philip and Simard 2008, but see Klein et al. 2016).

In conclusion, we found that incorporation into a common EcM network has few measurable beneficial effects on dipterocarp seedling growth. That is not to say that the EcM network is unimportant, but, that within the constraints of short-term experiments \((< 2 ½ \text{ years})\), we could not detect a signal of its influence on seedling growth. We did determine suggestions of an effect on seedling survival but this was only in one experiment and may have been an experimental artefact. We recommend that further studies should focus on the role that EcM networks play in resilience to drought periods or nutrient limitation of dipterocarp seedlings. In addition, we propose a working hypothesis, that needs further experimental testing, that the high tree species diversity and lack of benefit to trees of supporting heterospecific seedlings through a generalist EcM network is the reason for the minimal effects seen here. We welcome additional experiments and note that they need to be supported by identification of EcM fungi on seedling roots to aid interpretation. Currently, incorporation into an EcM network cannot categorically be invoked as affecting dipterocarp seedling growth or determining patterns of community diversity in dipterocarp-dominated tropical forests of Borneo.
Acknowledgements

For assistance with experimental design, fieldwork and comments on earlier versions of the manuscript we thank: Udin bin Ladin and the Malua field station team, Adzimi Madran, Adzley Madran, Justin Tabai, Dainold Yudat, Daulin Yudat, Rineson Yudat, Karin Saner, Ian Alexander, Yann Hautier, Jan Jansa, Lee Su See, Robert Ong, Malcolm Press and Glen Reynolds. This research is manuscript no. 15 of the Sabah Biodiversity Experiment and part of the Royal Society South-East Asia Rainforest Research Programme (Project No. RS243). All experiments complied with the laws of the country they were conducted in (Malaysia) at the time of the studies.

This project was financially supported through the British Ecological Society, the Ishizaka Foundation, the Darwin Initiative (United Kingdom Department for Environment, Food and Rural Affairs) and the University of Zürich.

Disclosure statement

The authors declare that they have no conflicts of interest. The authors acknowledge that they have no financial interest or benefit arising from the direct applications of this research.

Notes on Contributors

Francis Q. Brearley is an ecologist interested in the functional importance of plant-soil interactions for ecological processes in tropical forests.

Philippe Saner is an environmental scientist with a main interest in tropical plant community ecology and the restoration of tropical forests.
Ayuho Uchida was a Ph.D. student examining the importance of root competition and ectomycorrhizal fungi for dipterocarp seedling growth.

David F.R.P. Burslem is interested in the community and ecosystem ecology of tropical forests with a particular focus on the maintenance of species diversity and the conservation of tropical forests.

Andy Hector is a community ecologist interested in biodiversity loss and its consequences for the stability and functioning of ecosystems and the provision of ecological services.

Reuben Nilus is an ecologist working on the diversity, distribution and conservation of the forests of Sabah.

Julie D. Scholes is a physiologist/molecular biologist interested in the role of pathogens and mycorrhizas in the maintenance of dipterocarp diversity in tropical forests.

Simon Egli has a main interest in mycorrhizal fungi and how they support the resistance and resilience of forest ecosystems in a changing environment.

References

Francis R, Read DJ. 1984. Direct transfer of carbon between plants connected by

Meijer W, Wood GHS. 1964. Dipterocarps of Sabah (North Borneo), Sabah Forest Record 5. Sandakan (Malaysia): Forest Department.

Figure legends

Figure 1: Effect of fungicide addition, but no effect of exclusion from an ectomycorrhizal hyphal network on the relative diameter growth rate (RGR) of two species of dipterocarp seedlings (top: *Hopea nervosa* and bottom: *Parashorea tomentella*) over a 24-month period at Kabili-Sepilok Forest Reserve in Sabah (Malaysian Borneo). The box indicates the data range from the lower quartile (25%) to the upper quartile (75%) and covers 50% of the data with the solid horizontal line within the box indicating the median. Whiskers indicate the data range from the lower 10% to the upper 90% (1.5 times the lower or upper quartile); outliers are indicated separately with a dot. See text for full details of experimental treatments.
Figure 2: No effect of exclusion from an ectomycorrhizal hyphal network on the relative diameter growth rate (RGR) of two species of dipterocarp seedlings by distance from adult tree (top: *Dryobalanops lanceolata* and bottom: *Shorea parvifolia*) over an 11-month period at Malua Forest Reserve in Sabah (Malaysian Borneo). The box indicates the data range from the lower quartile (25%) to the upper quartile (75%) and covers 50% of the data with the solid horizontal line within the box indicating the median. Whiskers indicate the data range from the lower 10% to the upper 90% (1.5 times the lower or upper quartile); outliers are indicated separately with a dot. See text for full details of experimental treatments.
Figure 3: No effect of exclusion from an ectomycorrhizal hyphal network on the relative diameter growth rate (RGR) of four species of dipterocarp seedlings (top: *Dryobalanops lanceolata*, middle top: *Parashorea tomentella*, middle bottom: *Shorea beccariana* and bottom: *Shorea multiflora*) across soil types over a 29-month period at Kabili-Sepilok Forest Reserve in Sabah (Malaysian Borneo). Note that *S. beccariana* and *S. multiflora* growing in the alluvial soil type were harvested after 15 months due to high mortality rates. The box indicates the data range from the lower quartile (25%) to the upper quartile (75%) and covers 50% of the data with the solid horizontal line within the box indicating the median. Whiskers indicate the data range from the lower 10% to the upper 90% (1.5 times the lower or upper quartile); outliers are indicated separately with a dot. See text for full details of experimental treatments.
Table 1: Ecological information on seedlings of six dipterocarp species used to experimentally assess the importance of incorporation into a common EcM network on seedling growth in tropical forests of Malaysian Borneo.

<table>
<thead>
<tr>
<th>Name</th>
<th>Size</th>
<th>Wood density</th>
<th>Distribution</th>
<th>Experiment(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dryobalanops lanceolata</td>
<td>Very large emergent</td>
<td>Medium / heavy</td>
<td>Common on fertile clay-rich soils in lowland northern Borneo</td>
<td>2,3</td>
</tr>
<tr>
<td>Hopea nervosa</td>
<td>Medium-sized</td>
<td>Heavy</td>
<td>Locally common in eastern Sabah</td>
<td>1</td>
</tr>
<tr>
<td>Parashorea tomentella</td>
<td>Large emergent</td>
<td>Light</td>
<td>Locally common on fertile lowland soils with occasional flooding (only on the east coast of northern Borneo)</td>
<td>1,3</td>
</tr>
<tr>
<td>Shorea beccariana</td>
<td>Medium-sized to large</td>
<td>Light</td>
<td>Common in northern Borneo on sandy soils and particularly ridge-tops associated with sandstone rocks.</td>
<td>3</td>
</tr>
<tr>
<td>Shorea multiflora</td>
<td>Small to medium-sized</td>
<td>Light</td>
<td>Common throughout Borneo on nutrient-poor or sandy soils and coastal hill slopes.</td>
<td>3,4</td>
</tr>
<tr>
<td>Shorea parvifolia</td>
<td>Large emergent</td>
<td>Light</td>
<td>Common throughout Borneo on better-drained clay soils.</td>
<td>2</td>
</tr>
</tbody>
</table>

Table 2: Experiment 1: Statistical summary table and biological interpretation of exclusion from an ectomycorrhizal hyphal network on relative growth rates (diameter, height and number of leaves) and survival for two species of dipterocarp seedlings (*Hopea nervosa* and *Parashorea tomentella*) over a 24-month period at Kabili-Sepilok Forest Reserve in Sabah (Malaysian Borneo). -R = Root exclusion, -RM = Root and ectomycorrhiza exclusion, -RM+F = Root and ectomycorrhiza exclusion plus fungicide addition.

<table>
<thead>
<tr>
<th>Effect</th>
<th>F(df)</th>
<th>P</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diameter</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treatment</td>
<td>$F_{4,220}=12.8$</td>
<td><0.0001</td>
<td>-RM+F reduced growth of Hopea nervosa</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-RM treatment showed faster growth rate compared to -R in Parashorea tomentella</td>
</tr>
<tr>
<td>Species</td>
<td>$F_{1,220}=19.2$</td>
<td><0.0001</td>
<td>Seedlings of Parashorea tomentella grew faster than Hopea nervosa</td>
</tr>
<tr>
<td>Treatment x Species</td>
<td>$F_{4,220}=2.7$</td>
<td><0.05</td>
<td>Slower growth with -RM+F for Hopea nervosa but not Parashorea tomentella</td>
</tr>
<tr>
<td>Height</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treatment</td>
<td>$F_{4,220}=1.4$</td>
<td>ns</td>
<td>No ectomycorrhizal network effect</td>
</tr>
<tr>
<td>Species</td>
<td>$F_{1,220}=4.1$</td>
<td><0.05</td>
<td>Parashorea tomentella grew faster than Hopea nervosa</td>
</tr>
<tr>
<td>Treatment x Species</td>
<td>$F_{4,220}=0.8$</td>
<td>ns</td>
<td>No significant interaction term</td>
</tr>
<tr>
<td>Leaves</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treatment</td>
<td>$F_{4,220}=5.0$</td>
<td><0.001</td>
<td>Hopea nervosa control seedlings grew faster than -R and -RM</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-RM+F significantly reduced growth in Hopea nervosa</td>
</tr>
<tr>
<td>Species</td>
<td>$F_{1,220}=116.3$</td>
<td><0.0001</td>
<td>Hopea nervosa seedlings grew faster than Parashorea tomentella seedlings</td>
</tr>
<tr>
<td>Treatment x Species</td>
<td>$F_{4,220}=1.8$</td>
<td>ns</td>
<td>No significant interaction term</td>
</tr>
<tr>
<td>Survival</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treatment</td>
<td>$\chi^2_{2,7}=4.0$</td>
<td>ns</td>
<td>No effect of treatment on survival</td>
</tr>
<tr>
<td>Species</td>
<td>$\chi^2_{6,7}=6.4$</td>
<td><0.01</td>
<td>Seedlings of Hopea nervosa showed higher survival compared to Parashorea tomentella</td>
</tr>
<tr>
<td>Treatment x Species</td>
<td>$\chi^2_{7,11}=4.2$</td>
<td>ns</td>
<td>No significant interaction term</td>
</tr>
</tbody>
</table>
Table 3: Survival rates (%) of dipterocarp seedlings following exclusion from an ectomycorrhizal hyphal network in four independent experiments conducted in Borneo. See text for full details of experimental set-up in each experiment. Dash (-) indicates that the treatment noted was not present in the given experiment. Asterisk (*) indicates 15 months to harvest whilst all other values are for the entire experimental period. -R = Root exclusion, -RM = Root and ectomycorrhiza exclusion, -RM+F = Root and ectomycorrhiza exclusion plus fungicide addition.

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Control</th>
<th>Sub-Control</th>
<th>-R</th>
<th>-RM</th>
<th>-RM+F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parashorea tomentella</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Experiment 1</td>
<td>79</td>
<td>83</td>
<td>80</td>
<td>71</td>
<td>80</td>
</tr>
<tr>
<td>Hopea nervosa</td>
<td>96</td>
<td>92</td>
<td>100</td>
<td>88</td>
<td>83</td>
</tr>
<tr>
<td>Hopea nervosa</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Experiment 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Near</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dryobalanops lanceolata</td>
<td>98</td>
<td>-</td>
<td>97</td>
<td>95</td>
<td>-</td>
</tr>
<tr>
<td>Shorea parvifolia</td>
<td>98</td>
<td>-</td>
<td>97</td>
<td>89</td>
<td>-</td>
</tr>
<tr>
<td>Far</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dryobalanops lanceolata</td>
<td>99</td>
<td>-</td>
<td>100</td>
<td>97</td>
<td>-</td>
</tr>
<tr>
<td>Shorea parvifolia</td>
<td>98</td>
<td>-</td>
<td>98</td>
<td>90</td>
<td>-</td>
</tr>
<tr>
<td>Experiment 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alluvial</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dryobalanops lanceolata</td>
<td>50</td>
<td>70</td>
<td>60</td>
<td>70</td>
<td>-</td>
</tr>
<tr>
<td>Shorea beccariana</td>
<td>30*</td>
<td>30*</td>
<td>30*</td>
<td>20*</td>
<td>-</td>
</tr>
<tr>
<td>Shorea multiflora</td>
<td>20*</td>
<td>30*</td>
<td>40*</td>
<td>10*</td>
<td>-</td>
</tr>
<tr>
<td>Parashorea tomentella</td>
<td>20</td>
<td>20</td>
<td>40</td>
<td>20</td>
<td>-</td>
</tr>
<tr>
<td>Sandstone</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dryobalanops lanceolata</td>
<td>40</td>
<td>40</td>
<td>50</td>
<td>60</td>
<td>-</td>
</tr>
<tr>
<td>Shorea beccariana</td>
<td>60</td>
<td>60</td>
<td>40</td>
<td>30</td>
<td>-</td>
</tr>
<tr>
<td>Shorea multiflora</td>
<td>50</td>
<td>30</td>
<td>40</td>
<td>30</td>
<td>-</td>
</tr>
<tr>
<td>Parashorea tomentella</td>
<td>40</td>
<td>70</td>
<td>60</td>
<td>30</td>
<td>-</td>
</tr>
<tr>
<td>Experiment 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shorea multiflora</td>
<td>92</td>
<td>-</td>
<td>-</td>
<td>88</td>
<td>-</td>
</tr>
</tbody>
</table>
Table 4: Experiment 2: Statistical summary table and biological interpretation of exclusion from an ectomycorrhizal hyphal network and distance from adult tree on relative growth rates (diameter, height and number of leaves) and survival for two species of dipterocarp seedlings (*Dryobalanops lanceolata* and *Shorea parvifolia*) over an 11-month period at the Malua Forest Reserve in Sabah (Malaysian Borneo). Interaction terms not included were not statistically significant for any of the parameters measured. -R = Root exclusion, -RM = Root and ectomycorrhiza exclusion.

<table>
<thead>
<tr>
<th>Effect</th>
<th>F(df)</th>
<th>P</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diameter</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treatment</td>
<td>F_{2,238} = 0.6</td>
<td>ns</td>
<td>No ectomycorrhizal network effect</td>
</tr>
<tr>
<td>Distance</td>
<td>F_{1,238} = 1.1</td>
<td>ns</td>
<td>No effect of distance from adult tree</td>
</tr>
<tr>
<td>Species</td>
<td>F_{1,238} = 10.2</td>
<td><0.01</td>
<td>Dryobalanops lanceolata grew faster than Shorea parvifolia</td>
</tr>
<tr>
<td>Treatment x Species</td>
<td>F_{2,238} = 0.3</td>
<td>ns</td>
<td>No significant interaction term</td>
</tr>
<tr>
<td>Height</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treatment</td>
<td>F_{2,238} = 1.2</td>
<td>ns</td>
<td>No ectomycorrhizal network effect</td>
</tr>
<tr>
<td>Distance</td>
<td>F_{1,238} = 9.3</td>
<td><0.01</td>
<td>Dryobalanops lanceolata grew faster closer to adult trees</td>
</tr>
<tr>
<td>Species</td>
<td>F_{1,238} = 0.1</td>
<td>ns</td>
<td>No species differences</td>
</tr>
<tr>
<td>Treatment x Species</td>
<td>F_{2,238} = 2.5</td>
<td><0.10</td>
<td>Shorea parvifolia control seedlings grew marginally faster than -R and significantly faster than -RM but no effect on Dryobalanops lanceolata</td>
</tr>
<tr>
<td>Leaves</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treatment</td>
<td>F_{2,238} = 3.1</td>
<td><0.05</td>
<td>Shorea parvifolia -RM seedlings grew slower than the -R treatment</td>
</tr>
<tr>
<td>Distance</td>
<td>F_{1,238} = 0.9</td>
<td>ns</td>
<td>No effect of distance from adult tree</td>
</tr>
<tr>
<td>Species</td>
<td>F_{1,238} = 0.1</td>
<td>ns</td>
<td>No species differences</td>
</tr>
<tr>
<td>Treatment x Species</td>
<td>F_{2,238} = 3.2</td>
<td><0.05</td>
<td>Dryobalanops lanceolata -RM seedlings grew slower, but no effect on Shorea parvifolia</td>
</tr>
<tr>
<td>Survival</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treatment</td>
<td>\chi^{2}_{3,5} = 13.3</td>
<td><0.0001</td>
<td>-RM showed significantly lower survival for both species</td>
</tr>
<tr>
<td>Distance</td>
<td>\chi^{2}_{1,6} = 1.0</td>
<td>ns</td>
<td>No effect of distance from adult tree</td>
</tr>
<tr>
<td>Species</td>
<td>\chi^{2}_{4,5} = 4.4</td>
<td><0.05</td>
<td>Survival rate in Shorea parvifolia lower than in Dryobalanops lanceolata</td>
</tr>
<tr>
<td>Treatment x Species</td>
<td>\chi^{2}_{5,7} = 0.4</td>
<td>ns</td>
<td>No significant interaction term</td>
</tr>
</tbody>
</table>
Table 5: Experiment 3: Statistical summary table and biological interpretation of exclusion from an ectomycorrhizal hyphal network and soil type on relative growth rates (diameter, height and number of leaves) for four species of dipterocarp seedlings (*Dryobalanops lanceolata, Parashorea tomentella, Shorea beccariana* and *Shorea multiflora*) over a 29-month period at Kabili-Sepilok Forest Reserve in Sabah (Malaysian Borneo). The three-way interaction term is not included as it was not statistically significant for any of the parameters measured. -R = Root exclusion, -RM = Root and ectomycorrhiza exclusion.

<table>
<thead>
<tr>
<th>Effect</th>
<th>F_{df}</th>
<th>P</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diameter</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treatment</td>
<td>$F_{3,276}=2.6$</td>
<td><0.10</td>
<td>See interactions below</td>
</tr>
<tr>
<td>Soil type</td>
<td>$F_{1,276}=0.8$</td>
<td>ns</td>
<td>No soil type effect</td>
</tr>
<tr>
<td>Species</td>
<td>$F_{3,276}=0.8$</td>
<td>ns</td>
<td>No species effect</td>
</tr>
<tr>
<td>Treatment x Species</td>
<td>$F_{9,276}=1.3$</td>
<td>ns</td>
<td>No significant interaction term</td>
</tr>
<tr>
<td>Treatment x Soil type</td>
<td>$F_{3,276}=2.7$</td>
<td><0.05</td>
<td>-RM of Parashorea tomentella, Shorea beccariana and Shorea multiflora grew faster on sandstone soil than -R for all three species</td>
</tr>
<tr>
<td>Species x Soil type</td>
<td>$F_{3,276}=5.4$</td>
<td><0.01</td>
<td>-R of Dryobalanops lanceolata grew faster on alluvial soil and overall faster than –RM</td>
</tr>
<tr>
<td>Height</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treatment</td>
<td>$F_{3,276}=1.0$</td>
<td>ns</td>
<td>No ectomycorrhizal network effect</td>
</tr>
<tr>
<td>Soil type</td>
<td>$F_{1,276}=0.9$</td>
<td>ns</td>
<td>No soil type effect</td>
</tr>
<tr>
<td>Species</td>
<td>$F_{3,276}=3.6$</td>
<td><0.05</td>
<td>-R of Parashorea tomentella grew faster on sandstone soil</td>
</tr>
<tr>
<td>Treatment x Species</td>
<td>$F_{9,276}=1.0$</td>
<td>ns</td>
<td>No significant interaction term</td>
</tr>
<tr>
<td>Treatment x Soil type</td>
<td>$F_{1,276}=1.1$</td>
<td>ns</td>
<td>No significant interaction term</td>
</tr>
<tr>
<td>Species x Soil type</td>
<td>$F_{3,276}=0.4$</td>
<td>ns</td>
<td>No significant interaction term</td>
</tr>
<tr>
<td>Leaves</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treatment</td>
<td>$F_{3,276}=1.1$</td>
<td>ns</td>
<td>No ectomycorrhizal network effect</td>
</tr>
<tr>
<td>Soil type</td>
<td>$F_{1,276}=0.1$</td>
<td>ns</td>
<td>No soil type effect</td>
</tr>
<tr>
<td>Species</td>
<td>$F_{3,276}=0.1$</td>
<td>ns</td>
<td>No species effect</td>
</tr>
<tr>
<td>Treatment x Species</td>
<td>$F_{9,276}=1.4$</td>
<td>ns</td>
<td>No significant interaction term</td>
</tr>
<tr>
<td>Treatment x Soil type</td>
<td>$F_{1,276}=2.0$</td>
<td>ns</td>
<td>No significant interaction term</td>
</tr>
<tr>
<td>Species x Soil type</td>
<td>$F_{3,276}=4.7$</td>
<td><0.01</td>
<td>Dryobalanops lanceolata seedlings grew faster on alluvial soil than sandstone soil</td>
</tr>
<tr>
<td>Survival</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treatment</td>
<td>$\chi^2_{6,9}=1.2$</td>
<td>ns</td>
<td>No effect of treatment on survival</td>
</tr>
<tr>
<td>Soil type</td>
<td>$\chi^2_{6,9}=6.0$</td>
<td><0.01</td>
<td>Survival on alluvial soil was significantly lower compared to sandstone soil</td>
</tr>
<tr>
<td>Species</td>
<td>$\chi^2_{6,9}=7.2$</td>
<td><0.10</td>
<td>Seedlings of Shorea multiflora and Shorea beccariana showed lowest survival after 15 months</td>
</tr>
<tr>
<td>Treatment x Species</td>
<td>$\chi^2_{9,18}=4.3$</td>
<td>Ns</td>
<td>No significant interaction term</td>
</tr>
<tr>
<td>Treatment x Soil type</td>
<td>$\chi^2_{9,12}=2.3$</td>
<td>ns</td>
<td>No significant interaction term</td>
</tr>
<tr>
<td>Species x Soil type</td>
<td>$\chi^2_{9,12}=4.6$</td>
<td>ns</td>
<td>No significant interaction term</td>
</tr>
</tbody>
</table>