Title: Comparative assessment of SSR and SNP markers for inferring the population genetic structure of the common fungus Armillaria cepistipes

Full names and addresses of all authors:

Dr. Tetyana Tsykun, Swiss Federal Research Institute WSL, Zürcherstrasse 111, CH-8903 Birmensdorf, Switzerland

Dr. Christian Rellstab, Swiss Federal Research Institute WSL, Zürcherstrasse 111, CH-8903 Birmensdorf, Switzerland

Dr. Cyril Dutech, INRA, University of Bordeaux, UMR 1202 BIOGECO, F-33612 Cestas, France

Dr. György Sipos, Research Center for Forestry and Wood Science, University of West Hungary, Bajcsy-Zsilinszky u. 4, HU-9400 Sopron, Hungary

Dr. Simone Prospero, Swiss Federal Research Institute WSL, Zürcherstrasse 111, CH-8903 Birmensdorf, Switzerland

Corresponding author: Tetyana Tsykun, Swiss Federal Research Institute WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland, phone: +41447392249, fax: +41447392215, e-mail: tetyana.tsykun@wsl.ch

Running title: Fungal population structure from SSRs or SNPs

Word count for main text: 6966

Abstract

During the last years, simple sequence repeats (SSRs, also known as microsatellites) and single nucleotide polymorphisms (SNPs) have become the most popular molecular markers for describing neutral genetic variation in populations of a wide range of organisms. However, only a limited
number of studies has focused on comparing the performance of these two
types of markers for describing the underlying genetic structure of wild
populations. Moreover, none of these studies targeted fungi, the group of
organisms with one of the most complex reproductive strategies. We
evaluated the utility of SSRs and SNPs for inferring the neutral genetic
structure of *Armillaria cepistipes* (basidiomycetes) at different spatial
scales. For that, 407 samples were collected across a small (150 km²) area
in the Ukrainian Carpathians and a large (41,000 km²) area in the Swiss
Alps. All isolates were analyzed at 17 SSR loci distributed throughout the
whole genome and at 24 SNP loci located in different single-copy
conserved genes. The two markers showed different patterns of structure
within the two spatial scales studied. The multi-allelic SSR markers seemed
to be best suited for detecting genetic structure in indigenous fungal
populations at a rather small spatial scale (radius of about 50-100 km). The
pattern observed at SNP markers rather reflected ancient divergence of
distant (about 1000 km) populations that in addition are separated by
mountain ranges. Despite these differences, both marker types were
suitable for detecting the weak genetic structure of the two *A. cepistipes*
populations investigated.

Keywords: population genetic structure, genetic markers, genetic diversity,
population differentiation, *Armillaria*.

INTRODUCTION

Investigating the population genetics of fungi may be a challenging task
because of the complexity of their mating systems (e.g. Nieuwenhuis and
Besides sexual reproduction and clonal (asexual) spread, diploid-haploid mating resulting in the formation of a recombinant nucleus through complex events may also be observed. These different mating processes can occur in parallel and have contradictory impacts on traditional population genetic estimators, like heterozygosity (De Meeûs et al., 2007). Potentially, this may lead to false inferences, e.g. revealing subdivisions in populations which are actually not subdivided or extensive genetic exchange when it is completely absent. In the recent past, in addition to traditional population genetic estimators, a range of clustering methods for probabilistically assigning individuals to genetic clusters have been developed (Pritchard et al., 2000; Jombart et al., 2010). Although these methods have been used with a variety of molecular markers, so far only a limited number of studies exist that have compared the particular outcome of depicting population genetic structure with different markers types, particularly in fungal study systems. On one hand, the different reproductive processes mentioned above act on the entire nuclear genome, therefore, we expect them to have a similar impact on different marker types. On the other hand, although these clustering methods are based on allele frequencies and do not directly include the characteristics (like mutation rate or ascertainment bias, see below) of the applied markers, we might expect differences in population structure inference when using them, because different marker types can exhibit different spectra of allele frequencies (see, e.g., Fischer et al. 2017).
During the last two decades, simple sequence repeats (SSRs, also known as microsatellites) and single nucleotide polymorphisms (SNPs) have become the most popular molecular markers for describing genetic variation in natural populations of a wide range of organisms with different biology. At the same time, an intense debate has arisen about the robustness and consistency of the results obtained with these two types of markers (Väli et al., 2008; Coates et al., 2009; Ljungqvist et al., 2010; Guichoux et al., 2011; Fischer et al., 2017). Both SSRs and SNPs are abundant in the genome of most organisms and therefore potentially useful for detecting the population genetic structure and reconstructing the evolutionary history of species. However, because of different mutation rates and mechanisms, genome-wide distribution patterns, and biological functions, the use of SSRs and SNPs may lead to substantially different outcomes when testing specific hypotheses (Banke and McDonald, 2005; Coates et al., 2009; Fischer et al., 2017).

SSRs are generally abundant and polymorphic in non-expressed genomic regions and consequently considered to be selectively neutral. However, SSR loci can also occur in regions of chromosomes (e.g. telomeres or centromeres) involved in gene transcription, translation, chromatin organization, or recombination (Li et al., 2002) and might therefore be under selection. Neutral SSRs evolve rapidly without vital consequences for the organisms. Due to replication slippage, SSR loci mutate from 10 to 100 thousand times more frequently per generation than single nucleotide substitutions occur (Guichoux et al., 2011). Their high mutation rates and
assumed neutral evolution allow the accumulation of numerous population-
specific (i.e. private) alleles, which are important for revealing hidden
population structure. Their multi-allelic nature also results in a higher
probability to detect heterozygosity than, for instance, an equal number of bi-
allelic markers. However, the unusual high variability of SSRs in respect to
other genomic regions might not necessarily reflect patterns of genome-wide
genetic diversity (Väli et al., 2008; Ljungqvist et al., 2010; Fischer et al.,
2017). Moreover, the rapid mutation rates of SSRs may also confound
signals of population structuring and divergence. For instance, the frequent
forward and backward mutations of SSR loci can create identical alleles in
populations that are unrelated or genetically isolated (i.e. homoplasy). This
undesirable effect can be compensated by increasing the number of
polymorphic SSR loci used, but the level of genetic differentiation of
populations that diverged long time ago could still be underestimated (Estoup
et al., 2002).

In recent years, SNPs have started to replace SSRs in population genetic
studies as well as in a wide range of other applications (Brumfield et al.,
2003; Guichoux et al., 2011). SNPs occur twice as frequently in intergenic
and non-coding regions of the genome than in coding regions (Zhao et al.,
2003). However, genome-wide association studies revealed that SNPs
located in non-coding regions are often physically linked to functional or
regulatory genomic sites, thus reflecting, for example, selection signatures
(Kim et al., 2007). Given that SNPs are mostly bi-allelic, traditional population
genetic statistics can easily be applied to them but a higher number of loci
sufficiently polymorphic might be necessary to reach the same power as multi-allelic SSR loci (Guichoux et al., 2011). The advent of next generation sequencing (NGS) techniques has considerably accelerated, simplified and automated genome-wide SNP detection and genotyping. However, considering that also a relatively low number of highly polymorphic SNPs can potentially give a similar genetic resolution as randomly chosen and multi-allelic SSRs (Kaiser et al., 2016), an alternative strategy to genome-wide SNP screening might be targeting polymorphic sites in unlinked single copy genes, generally known to be conserved in the targeted phylum (Dutech et al., 2016).

In the present study, we aimed at evaluating the use of SSRs and SNPs for inferences of neutral genetic population structure in the fungus Armillaria cepistipes (Basidiomycota, Physalacriaceae). Fungi of this genus belong to the most important and frequent component of the wood-decaying mycoflora in natural and managed forest ecosystems worldwide (Baumgartner et al., 2011). Moreover, several Armillaria species can act as primary or secondary pathogens causing root rot on a wide range of tree and shrub species, thereby affecting crop and timber plantations. Armillaria has both sexual and asexual (vegetative) reproductive strategies. In addition, diploid-haploid mating was observed for this fungi in vitro (Carvalho et al., 1995). This can create new genotypes in natural populations and potentially alter population structure. Due to vegetative propagation, genotypes (i.e. genets) of Armillaria may persist over centuries and even millennia in natural forests. Because of this high
longevity and the stable territoriality, *Armillaria* may influence forest structure and dynamics over several generations of host trees. The preferentially saprophytic *A. cepistipes* is widely distributed in Europe and frequently occurs in mountain forests from the Alps to the Carpathians (Heinzelmann *et al.*, 2012; Tsykun *et al.*, 2012). *Armillaria cepistipes* spreads locally by producing a dense network of vegetative rhizomorphs in the soil, through which it can rapidly colonise new food bases (e.g. fresh stumps or wood debris). The fungus might also spread over longer distances with wind via basidiospores. These two different strategies of dispersal might have an impact on population genetic structure and different genetic markers may therefore be necessary to reveal it at different spatial scales.

We developed two sets of molecular markers for *A. cepistipes*; 24 SNPs from 24 single-copy genes and 17 SSRs partially derived from a draft genome assembly. We tested these markers on populations with different spatial scales from two European mountain ranges, i.e. a large-scaled population scattered over the Swiss Alps and a small-scaled population in two forest locations of the Ukrainian Carpathians (Figure 1). The questions we addressed were: (1) Are the two sets of developed markers sufficient for depicting population genetic structure? (2) Do SNP and SSR markers produce similar results regarding genetic differentiation and structure, and if not, (3) what are the possible reasons for that?

MATERIALS AND METHODS

Samples of Armillaria cepistipes
In total, 407 samples of *A. cepistipes* were used in this study, all originating either from the Carpathians or the Alps (Figure 1). In the Carpathians, samples were collected across 150 km² in two different protected forests as described in Tsykun *et al.* (2012), i.e. 121 samples within 40 plots in a virgin pure beech (*Fagus sylvatica*) forest and 160 samples in 35 plots in a natural mixed forest with conifers (*Picea abies, Abies alba, Acer pseudoplatanus, Fagus sylvatica*). These two Carpathian subpopulations (forests) were about 50 km apart (Figure 1). The pure beech forest is located between 400 and 1150 m a.s.l. The annual average temperature is +7 °C and the annual average precipitation sum is 948 mm. The natural conifer and mixed forest lies between 700 and 1550 m a.s.l. The territory has average temperatures from 0 to +7 °C and the average precipitation sum varies between 1000 and 1500 mm. In both Carpathian forests, *Armillaria* was systematically sampled on a 1.5 x 1.5 km square grid (Tsykun *et al.*, 2012). In each intersecting point of the grid, a 20 x 25 m (500 m²) plot was established and rhizomorphs were sampled from the soil and from the root collar of trees at all four corners of the rectangle. In Switzerland, an individual-based sampling approach was adopted as described in Heinzelmann *et al.* (2012). Here, the *A. cepistipes* samples were collected in managed and unmanaged forests in an area of about 41 000 km² (Figure 1) covering all altitudinal zones, both north (i.e. 62 isolates from the subpopulation Plateau in Heinzelmann *et al.* (2012)) and within or south of the Alps (64 isolates from the subpopulations Southern, Western Inner, Eastern Inner Alps in Heinzelmann *et al.* (2012)). These four
investigated subpopulations are named as follows: "Beech" and "Mixed/conifer" (for the subpopulations of the Carpathians), and "North" and "South" (for the subpopulations of the Alps).

DNA was extracted as described in Heinzelmann et al. (2012) and Tsykun et al. (2012). All 407 isolates were genotyped with SSRs and SNPs.

Screening and genotyping of SSRs and SNPs

Briefly, 32 single copy protein-coding gene sequences of 12 *A. cepistipes* samples were sequenced and screened for the presence of SNPs (Dutech et al., 2016). Based on the polymorphism detected in these sequences, 131 primer pairs amplifying each one SNP were initially designed and dispatched in multiplexes with MASSARRAY ASSAY DESIGN 4.1 for Sequenom screening. These multiplexes were tested with 48 samples from the Ukrainian Carpathians and 47 samples from the Swiss Alps. SNPs in genes that showed evidence to be present in multiple copies in the genome of *A. cepistipes*, monomorphic loci (minor allele frequency < 5%), and loci that were not amplified in the majority of the screened samples were discarded. After considering the compatibility of the primers pairs, one multiplex of 31 SNPs located in 24 single copy protein-coding genes was selected for final genotyping (for more details, see Table S1.1 and Figure S1.1, Appendix 1). SNP genotyping was performed using the medium throughput MassARRAY iPLEX genotyping assay from Sequenom (San Diego, CA, USA). Raw genotypic data were analyzed with TYPER 4.0 (Agena Biosciences). For 32 of the 407 DNA isolates genotyping was repeated.
A total of 17 SSR loci were used in this study (Table S1.2, Appendix 1). Six of them (Arm02, Arm05, Arm09, Arm11, Arm15, Arm16) were previously specifically developed for *A. cepistipes* by Prospero *et al.* (2010). Two loci (Am109 and Am111) were initially developed for *A. mellea* (Baumgartner *et al.*, 2009) but successfully applied in *A. cepistipes* (Heinzelmann *et al.*, 2012). The remaining nine loci (AC18, AC31, AC37, AC12, AC16, AC04, AC38, AC22, AC34) were developed in the present study (for fragment sequences of the selected SSR loci and for annotations see Table S1.2, Appendix 1). An *A. cepistipes* draft genome assembly (G Sipos, unpublished) was screened for simple sequence repeat patterns with UNIPRO UGENE v1.170 (Okonechnikov *et al.*, 2012). Search parameters included a nucleotide repeat size of two to six and a minimum tandem length of eight repeats. Among the SSRs detected, 24 loci scattered over 14 major assembled scaffolds were selected. Di-, tri-, tetra-, and penta-nucleotide repeats were chosen. SSR loci that might be involved in chromosomal organization and recombination were avoided by ignoring tandem repeats close to telomere regions and repeats in a dense cluster, which might indicate centromere sites (Li *et al.* 2002).

For each of the 24 selected SSR loci, specific PCR reverse and forward primers were designed using UNIPRO UGENE v1.170 fulfilling the following criteria: GC content of 50-60%, start with G or C, primer size of 20-27 bp, similar annealing temperature (60 ± 3°C) of forward and reverse primer, and a resulting fragment size of 150-400 bp. Initially, each SSR locus was amplified using a forward primer with an M13pa
(CACGACGTTGTAACGAC) tail, the designed reverse primer, and a universal fluorescent dye-labeled M13pa (Boutin-Ganache et al., 2001). Each primer pair was tested separately with four isolates from the Ukrainian Carpathians and three isolates from the Swiss Alps. The PCR program was set as follows: 95°C (5 min), then 28 cycles at 95°C (30 s) / 60°C (90 s) / 72°C (30 s), followed by 8 cycles 95°C (30 s) / 55°C (45 s) / 72°C (30 s), and a final extension at 60°C for 30 min. PCR products were initially scored for successful amplification on 1.2% agarose gels, and subsequently run on an ABI 3130 Genetic Analyzer using GeneScan LiZ500 (Applied Biosystems, CA, USA) as internal size standard. For each locus that was successfully amplified with the M13pa labeled primer, the designed forward primer was then labeled at the 5’-end with a fluorescent dye (6FAM-blue, NED-yellow, VIC-green, PET-red, Applied Biosystems, CA, USA). Four multiplexes including each three to four primer pairs were subsequently developed (Table S1.2, Appendix 1). The final PCR was run as follows: 95°C (15 min), followed by 30 cycles at 94°C (30 s) / 60°C (90 s) / 72°C (30 s), and a final extension at 60°C for 30 min and 72°C for 30 min. The amplified fragments were run on an ABI DNA Analyzer (Applied Biosystems, CA, USA). Alleles were scored with GENEmapper 3.7 (Applied Biosystems).

Data analysis

In order to assess and compare the utility of the two marker types, only the isolates with an almost complete SSR and SNP dataset (i.e. not more than 5% missing data in both marker types) were included in the analyses. To
remove a putative clonal effect on the genetic structure, only one representative of each multi-locus genotype (MLG) per sampling plot was considered for genetic analysis for SNPs and SSRs separately.

In each population, number (Na) and evenness (E) of alleles per SSR locus, and observed and expected heterozygosity (H_{obs}, H_{exp}) for SSR and SNP loci were estimated using ARLEQUIN 3.5.2.1 (Excoffier et al., 2009) and the R-package POPPR (Kamvar et al., 2014). Allelic richness (Ar) per SSR locus was estimated using FSTAT 2.9.3.2 (Goudet, 2002) and rarefied to the population with the lowest sample size (i.e. the North Alpine subpopulation with 62 isolates). SSR and SNP loci were tested for significant departure from Hardy-Weinberg equilibrium (HWE) by conducting a Fisher’s exact test with a Markov chain algorithm (1,000,000 chain steps, 100,000 de-memorization steps) in ARLEQUIN 3.5.2.1. Pair-wise linkage disequilibrium (LD) between loci was tested with the log-likelihood ratio using a Markov chain algorithm (default parameters) as implemented in the web version of GENEPOP 4.2 (Rousset, 2008). The statistical significance (for HWE and LD) was inferred using 1000 permutations and sequential Bonferroni correction with α=0.05. Multilocus linkage disequilibrium was evaluated based on the P values from one-sided permutation tests with the R-package POPPR for the indexes of association I_A and r_bar_D (Agapow and Burt, 2001). Genetic differentiation among populations was assessed by calculating pairwise F{sub}_ST-values (Weir and Cockerham, 1984) and corresponding P values (α=0.05) with ARLEQUIN 3.5.2.1.
Investigating the neutral genetic structure and demographic history of populations implies the use of loci whose population-specific allele frequencies are not affected by natural selection. Although SSR loci are commonly considered as neutral makers, recent studies suggest that this is not always the case (e.g. Li et al., 2002). The SNPs used in this study originated from putative functional genes (Dutech et al., 2016). Thus, allele frequencies at these loci might be driven by natural selection instead of reflecting neutral population processes. Therefore, the SSR and SNP loci used in this study were tested for deviation from neutral patterns using two statistical approaches as implemented in ARLEQUIN 3.5.2.1 (Excoffier et al., 2009) and BAYESCAN v2.1 (Foll and Gaggiotti, 2008). The tests were conducted for the Carpathian and Alpine populations, ignoring subpopulations, and separately within the mountain ranges for the two subpopulations each. Both approaches assume a non-hierarchical finite island migration model.

The neutral genetic structure in the four subpopulations was investigated using two different approaches. First, a multivariate clustering method (discriminant analysis of principle components, DAPC) was applied that identifies synthetic variables and builds discriminant functions maximizing the variation between groups but minimizing it within groups (Jombart et al., 2010). In a first step, genetic data from both markers sets separately were transformed into principal components (PCs) and the optimal number of PCs was assessed with cross-validation (Jombart et al., 2010). Thereafter, we predefined geographic groups (i.e., the four subpopulations), following
the approach previously applied in a population genetic study of the oomycete pathogen *Phytophthora infestans* (Wang *et al.*, 2017). The DAPC then probabilistically assigned individuals to one of the four pre-defined groups. The DAPC was performed with the R package *adegenet* (Jombart *et al.*, 2010).

We also performed a Bayesian model-based cluster analysis with *STRUCTURE* 2.3.4 that uses allele frequencies at each locus to probabilistically assign individuals to genetic clusters. We used sampling locations of the subpopulations as prior geographic information (LOCPRIOR), the admixture ancestral model with correlated allele frequencies, and indication of null alleles (RECESSIVEALLELES settings) in locus AC18. Analyses were run with 200,000 burn-in iterations followed by the same number of iterations for Markov chain Monte Carlo (MCMC) in ten independent runs for each number of clusters (K) from one to 20. The most likely number of clusters (K) was determined by (a) considering the maximal mean and small standard deviation of the posterior probability of K among runs (Pritchard *et al.*, 2000) using *structure* HArvester (Earl and vonHoldt, 2011) and (b) looking at the alterations of individual assignment probabilities with increasing K (i.e. whether additional clusters were reflected by whole individuals or whether they rather resulted in individuals represented by several clusters). Average assignment probabilities of MLGs to the clusters were computed with CLUMPP 1.1.2 (Jakobsson and Rosenberg, 2007) using the Greedy algorithm for K≥10
and visualized using DIrrUET 1.1 (Rosenberg, 2004) and R graphic functions.

RESULTS

SNP and SSR marker sets

A total of 117 (89%) of the 131 detected SNP loci in the 24 single copy protein-coding genes were successfully amplified in the majority (78%) of the samples. Among these, 31 were selected for genotyping (Table S2.1, Appendix 2) based on the criteria described in the Materials and Methods section. In the selected set of loci, genotyping was successful in 97% of the samples and repeated genotyping of 32 samples revealed less than 1% difference in allele calling. All 31 SNP loci were bi-allelic, and in 29 of them the minor allele frequency was above 5%.

Based on the selection criteria given in the Materials and Methods section, a total of 281 SSR loci were found across the draft genome assembly (total length of about 75 Mbp; Münsterkötter et al., 2015). Twelve out of the 24 loci, for which specific primers with the M13pa modification at the 5’-end were designed, successfully amplified a PCR product of the expected size. However, three of them were either monomorphic or did not yield a PCR product in the three final multiplexes using the labeled forward primers, and were consequently not used for further analyses. Hence, in combination with the eight previously developed markers (Baumgartner et al., 2009; Prospero et al., 2010), the samples were genotyped at totally 17 polymorphic SSR loci scattered all over the genome (Figure S1.1, Appendix...
1). All SSR loci revealed a considerable level of polymorphism with a frequency of the most common allele lower than 95% (Table S2.1, Appendix 2). Missing data for both sets of markers were observed in less than 5% of the samples across loci and populations, except for the SSR locus AC18 which revealed 15% missing data in the Carpathian and almost 40% in the Alpine populations. Multilocus genotypes with missing data in loci other than AC18 were excluded from further analyses.

In addition to the high percentage of missing data, SSR locus AC18 also revealed a significant deficiency of heterozygotes and a statistically consistent deviation from Hardy-Weinberg equilibrium in all four subpopulations (Table S2.1, Appendix 2). This is strong evidence for the presence of null alleles. However, since null allele frequencies at this locus differ between Carpathian and Alpine populations and thus can be used for the STRUCTURE analysis (RECESSIVEALLELES settings), we kept it for further tests.

The linkage disequilibrium test showed that a significant correlation between allele frequencies among all subpopulations was only present at SNPs which are located in the same gene. Thus, for population structure analyses, only one random SNP locus per gene was considered, resulting in a total of 24 SNPs. Non-random association of allele frequencies was also observed for other pairs of SNP and SSR loci in specific subpopulations, but the statistical support was not consistent across loci and subpopulations (Table S2.2, Appendix 2). Noteworthy, these rarely pair-wise correlated loci were located in different scaffolds across the
genome (Figure S1.1, Appendix 1). The two multilocus estimators of non-random association between alleles (l_A and r_{barD}) were low across all subpopulations and markers (Table 1). However, in the two Carpathian subpopulations, non-random associations in SSR loci were supported by significant P values.

BAYESCAN revealed no F_{ST} outliers in both SSRs and SNPs (Figures S3.1B and S3.2B, Appendix 3), suggesting that all loci were selectively neutral in the studied populations and subpopulations. In contrast, **ARLEQUIN** showed locus-specific F_{ST} and heterozygosity at the SSR locus AC31 (95% confidence interval) when analyzing the Carpathian subpopulations separately (Figure S3.3A, Appendix 3), which might indicate that natural selection acted on this locus in Carpathian *A. cepistipes*. Similarly, SNP loci FG848_7 and FG894_7 were identified as F_{ST} outliers (99% confidence interval) with **ARLEQUIN** in the two Alpine subpopulations (Figure S3.6A, Appendix 3). In the overall analysis, assuming a finite island migration scenario between the Carpathian and Alpine populations, **ARLEQUIN** revealed no SSR locus being under selection, whereas the two SNP loci MS481_16 and FG730_11 showed evidence of being under purifying selection (Figure S3.2A, Appendix 3). Because these analyses revealed no consistent F_{ST} outliers among statistical approaches and population sets, all loci were considered as neutral and kept for further analysis.

Genetic diversity

Among the 407 isolates genotyped with 17 SSRs, 359 exhibited a unique combination of alleles, whereas only 278 unique SNP MLGs were detected.
Table 1. All 17 SSR loci were polymorphic in the investigated *A. cepistipes* populations and harbored a total of 135 alleles. Eighteen alleles were specific for the Carpathian population, whereas only 11 alleles were detected in the Alpine population. Within the Carpathian population, each subpopulation harbored five private alleles. The two Alpine subpopulations exhibited five (North) and three (South) private alleles. Mean allelic richness (Ar) across SSR loci was similar in all four subpopulations (Table 2), but varied considerably among loci (Table S2.1, Appendix 2). Two of the 31 SNP loci were polymorphic in only the Carpathian population (Table S2.1, Appendix 2). Just as for Ar, evenness (E) of alleles and expected heterozygosity (Hexp) across SSR and SNP loci showed only little variation among subpopulations (Table 2), but high variation among loci (Table S2.1, Appendix 2). Within subpopulations, SSR loci exhibited higher Hexp than SNP loci (Table 2).

Population structure

Pairwise FST values between subpopulations were low for both types of molecular markers (across SSR loci: from -0.01 to 0.08; across SNP loci: from -0.01 to 0.17), and even between the two substantially distant (> 1000 km apart) Alpine and Carpathian populations (SSR-FST = 0.025, SNP-FST = 0.026). Despite the generally low values of FST (resulting in *P* < 0.05), those computed between geographically distant subpopulations, e.g. Alpine South and Carpathian Beech, were about two (SNPs) to ten (SSRs) times higher than those between subpopulations within a mountain range (Table 3). An extremely low and statistically non-significant FST value was obtained
with SNPs markers between the two subpopulations of the Carpathians (Beech and Mixed/conifer) which were sampled at small spatial scale. In contrast, SSR markers revealed a non-significant F_{ST} value between the two Alpine subpopulations which were randomly sampled at a large scale (Table 3).

In the overall STRUCTURE analysis using all four subpopulations, SSRs revealed a larger number of genetic clusters than SNPs (Figure 2). For the SSR data, the log-likelihood increased constantly up to 20 clusters (Figure 2A). However, the standard deviations of the log-likelihood values increased simultaneously and became particularly high for some $K \geq 5$, like $K = 9$ and $K = 12$. Up to $K = 20$, increasing K led to individuals assigned to new clusters with high probability and revealed a complex structure within the small-scaled Carpathian subpopulations (Figure 2B, Figure S4.1, Appendix 4). For the SNP data, the log-likelihood was highest at $K = 2$ and high standard deviations of log-likelihood values suggested unstable results for $K > 3$ (Figure 2A). Unlike in the SSR dataset, increasing $K > 3$ did not assign fungal MLGs to new clusters and did not suggest a more complex genetic structure within any of the studied subpopulations. However, $K = 3$ supports the existence of two large-scaled Alpine subpopulations and one Carpathian population (Figure 2B, Figure S4.2, Appendix 4). Additional STRUCTURE analyses using only the two Alpine subpopulations (Figure S4.4, Appendix 4) showed the highest log-likelihood at $K = 2$ and confirmed the assignment pattern. Considering the two methods of K determination described above (highest log-likelihood and sequential cluster assignment
of the MLGs) and in order to avoid an overestimation of the number of
genetic clusters in the studied populations, we assumed $K = 4$ as
reasonable to describe the genetic structure with the SSR markers and $K = 3$ as the most likely number of genetic clusters with the SNP markers.

The four genetic clusters identified using SSRs split the 359 MLGs according to their geographic origin (Figure 2B, SSRs, $K=4$). All MLGs of the two Alpine subpopulations belonged to the same (green) cluster, whereas those from the two Carpathian subpopulations were mainly attributed to one (blue) of the three other clusters. However, in these two latter subpopulations a significant mixture of MLGs that belonged to the remaining two clusters (yellow and orange) was also observed. The STRUCTURE analyses revealed an almost complete absence of MLGs with admixed genetic origin in the large and randomly sampled population from the Alps. In contrast, such admixed MLGs were frequent in the two subpopulations of the Carpathians sampled across a smaller spatial scale, especially in the mixed and conifer forests. Most admixed MLGs from the orange cluster were present in this specific subpopulation (Figure 2B, SSRs, $K=4$).

The STRUCTURE analysis with the SNP data for $K = 3$ (Figure 2B, SNPs, $K=3$) revealed that the Carpathian and Alpine populations were clearly separated, with the first population including mainly MLGs from one cluster (green, membership probability of 60-80%) and the latter from two clusters (blue and yellow). Noteworthy, the pattern of subdivision within populations was the opposite as the one observed with SSRs. The small-scaled
subpopulation of the Carpathian Mountains was homogeneous, whereas in the large Alpine population the two subpopulations (North and South) were clearly differentiated (Figure 2B, SNPs, K=3). This signal of differentiation between the two Alpine subpopulations substantially disappeared when the five SNPs (loci: MS481_16, FG730_11, FG848_7, FG894_7, FG524_2) that showed deviation from neutral patterns (Figure S3.2, Figure S3.6, Appendix 3) were excluded from the cluster analyses (Figure S4.3, Appendix 4).

Cluster assignments with both types of loci were also examined with a discriminant analysis of principal components (DAPC, Figure 3). Based on lowest root mean squared error and highest mean of successful reassignments with 1000 replicates (cross-validation), 90 (of 110) and 20 (of 22) computed principal components were retained in the discriminant analysis using SSRs and SNPs, respectively. Three discriminant functions were built for each analysis. In both types of markers, no strong association was detected between MLGs assignments and their geographic origin. The individual posterior probabilities of assignment to a predefined geographic group were low for both the SSR and SNP data in all studied subpopulations. However, the proportion of MLGs successfully assigned (with posterior probability >95%) to the predefined geographic subpopulation differed between the genetic markers (SSRs 35% of studied MLGs; SNPs 0.36%, i.e. only one MLG).

Overall, the DAPC clustering agreed with the one of STRUCTURE (Figures 2 and 3). In both SSRs and SNPs, the first discriminant separated the MLGs
of the Carpathians and the Alps (Figure 3). With the SSR data, the two subpopulations of the Carpathians were further discriminated along the second axis, whereas the individuals from the two Alpine subpopulations largely overlapped (Figure 3). The opposite situation was observed in the SNP data, where the least overlap was observed between the two Alpine subpopulations. One noteworthy difference between the STRUCTURE and DAPC clustering could be observed with the SSR data (Figures 2 and 3). While STRUCTURE revealed a complex structure within the Carpathian subpopulations, the DAPC identified prominently differences between Beech and Mixed/conifer forests.

DISCUSSION

In this study, we aimed to compare the utility of SNP and SSR markers for investigating the neutral genetic population structure of the basidiomycete *A. cepistipes* at different spatial scales. Analyzing the population structure of such an organism implies also addressing several other issues, such as the contribution of different reproduction modes to its spread at large and small geographic scales, the connectivity among populations in a heterogeneous environment, and their demographic history. Our analysis revealed differences in the information that the two types of markers give about genetic structure within large and small geographic scales based on the example of two populations from mountain forests in Europe. Noteworthy, SSRs provided a higher resolution at a smaller geographic scale under a systematic sampling (Carpathian population), whereas SNPs
were able to differentiate the two subpopulations which were randomly sampled across a large area in the Alps.

Both types of markers revealed the presence of repeatedly occurring genotypes in the investigated populations. However, a higher number of MLGs was detected when using the 17 SSRs (359 MLGs in 407 isolates) than when using the 24 SNPs (278 MLGs). This result confirms that multi-allelic SSR markers have a higher discrimination power than bi-allelic SNP markers (Guichoux et al., 2011). High levels of genotypic diversity are generally expected in populations of fungi that mainly reproduce sexually. However, previous population genetic studies conducted in natural and managed forests in Europe showed that this is not always the case in Armillaria species (Prospero et al., 2008). Because of the spread via vegetative rhizomorphs, Armillaria species may produce large genets that occupy a forest area of several hectares (Bendel et al., 2006). Thus, the presence of such genets can reduce genotypic diversity. Moreover, mating of closely related haploids produced by spatially distributed clones via basidiospores during sexual reproduction will influence population structure and consequently change statistical estimators, (e.g. I_A and $rbar_D$) even after the clone-correction procedure.

Significant differences between SNPs and SSRs were observed with respect to heterozygosity (paired t-test, n=4, p<0.001), but not to F_{ST} (paired t-test, n=4, p=0.30). As expected due to their multi-allelic nature and usually higher level of polymorphism, SSR loci exhibited a significantly higher heterozygosity than bi-allelic SNP loci. However, locus-specific
values showed a wide range, possibly because of uneven allelic richness. Previous studies argued that both high and low numbers of alleles at SSR loci may affect the accuracy of heterozygosity estimates and consequently of population-specific fixation indexes (Wang, 2015; Fischer et al., 2017). In our study, SSRs were selected with an emphasis on different nucleotide number and GC content in the tandem repeats. Therefore, the ascertainment bias due to the selection of genomic fragments with exclusively high levels of polymorphism should be minor. For this reason, allelic richness and heterozygosity estimators vary considerably among loci.

In *Armillaria* populations, heterozygosity may also be strongly influenced by the mixed mating system. Clonal reproduction by rhizomorphs maintains heterozygosity (De Meeûs et al., 2007), whereas sexual reproduction increases it. In *Armillaria* species, spore release is intense but spore dispersal seems to be spatially limited (Travadon et al., 2012; Dutech et al., 2017). This may lead to inbreeding processes like mating between closely related haplotypes and plasmogamy of haploid spores (or mycelium) with their diploid parents, which may both reduce heterozygosity. As inbreeding and outbreeding processes can occur simultaneously in *Armillaria* populations, heterozygosity may not accurately explain demographic processes (e.g. gene flow between populations or a Wahlund effect due to population subdivision) in these fungi, regardless whether SNPs or SSRs are used. Nonetheless, in the large- and small-scaled *A. cepistipes* populations, we observed a heterozygote deficit at most loci for both types
of genetic markers, suggesting a predominance of inbreeding processes. However, the high abundance of rhizomorphs (Tsykun et al., 2012) and presence of repeated MLGs within different localities, also the low but significant indexes of multilocus association (I_A and r_{barD}) in the Carpathians suggest that clonal reproduction also might influence demographic processes in this population. Therefore, we can assume that this population is driven by inbreeding processes along with clonal spreading via rhizomorphs. However, long-distance spore dispersal cannot be excluded and is indirectly supported in our study by the low number of private alleles, the lack of a strong structure between subpopulations within mountain ranges (regardless of sampling design or spatial scale) and the low differentiation between the geographically distant Carpathian and Alpine populations (see below).

Pairwise F_{ST} values between the studied fungal populations and subpopulations, even between geographically distant ones (like Alpine vs. Carpathian), were low (0.001 – 0.036) with both types of markers. It is known that F_{ST} is very sensitive to the level of within-population variation, resulting in suspiciously low values in SSR studies and a consequent underestimation of the level of population divergence (Brumfield et al., 2003). However, low pairwise F_{ST} values in Armillaria (Giraud et al., 2008; Baumgartner et al., 2010; Heinzelmann et al., 2012), as well as in other fungi (Giraud et al., 2008), are rather the rule than the exception. This suggests low overall population differentiation due to extensive gene flow among populations. Although such high gene flow may be present between
the two subpopulations of the rather continuous Carpathian primeval forests, it is less realistic between the two Alpine subpopulations and between the Alpine and Carpathian populations, which are separated by the Alps and a large geographic distance, respectively. An alternative explanation for the low F_{ST} values may be a common glacial refugium of the *A. cepistipes* populations, possibly coupled with a relatively slow population divergence and homoplasy events. Recently, several authors (e.g. Jost, 2008; Meirmans and Hedrick, 2011) have criticized the use of F_{ST} as a measure of population differentiation. Since this estimator seems to be negatively correlated with the number of alleles per locus, F_{ST} tends to have values towards zero in populations with high allelic richness and thus underestimates the actual divergence between populations (Jost, 2008). In our study, low F_{ST} values were not only detected with the multi-allelic SSR markers, but also with the bi-allelic SNPs. In a comparative study by Fischer *et al.* (2017), substantially higher F_{ST} values were obtained with a limited number of SSRs than with genome-wide SNPs. The authors emphasized that pairwise F_{ST} calculated from SSRs must be used with caution. In particular, one should not rely on absolute values because it can reflect rather the highly polymorphic nature of the markers than a real whole-genome differentiation of populations. In our study, we used a limited number of SNPs, which were selected because they exhibited a sufficient level of polymorphism. Thus, this specific set of SNPs might induce an ascertainment bias and show a higher population differentiation than genome-wide SNPs that contain many low-frequency alleles. Regardless of
the overall low absolute F_{ST} values, for both types of markers, the genetic
differentiation between distant populations (Carpathian vs. Alpine) was
substantially higher than the one between subpopulations of the same
mountain region. Using SNPs, the highest differentiation was observed
between the most distant subpopulations that are separated by a high
mountain range, i.e. between both Carpathian subpopulations and the
subpopulation of the South Alps. In contrast, with the SSR data, the F_{ST}
value for the subpopulations sampled at a small spatial scale, i.e. Beech
and Mixed/conifer subpopulations of Carpathians, was higher (and
significantly different from zero) than the one from the SNP data.

Overall, the two clustering methods (DAPC and STRUCTURE) used for
investigating population genetic structure produced consistent results. The
geographically distant populations (i.e. Carpathian and Alpine) showed a
clear separation with both types of markers. SSRs and SNPs, however,
gave different signals within the two populations sampled at different spatial
scales. SSRs exhibited a considerable admixture of clusters in the two
geographically close and systematically sampled subpopulations of the
Carpathian forests in the STRUCTURE analysis, suggesting the same
ancestral origin and/or possible gene flow among populations. The DAPC
analysis, however, was able to define genetic components that differ
between the Carpathian subpopulations, suggesting a weak subdivision.
Because in this region the landscape barriers for spore dispersal are
relatively weak (e.g. low mountain relief and small distance between the
studied forests), genetic exchange between these subpopulations is a
realistic scenario. However, the clustering with SSRs showed also that fungal populations sampled within a small-scaled area might have a complex genetic structure. The mainly monocultural beech forests of the Carpathians seem to harbor a more homogenous *A. cepistipes* population which were resolved into only two genetic clusters in the STRUCTURE analysis, whereas the mixed and pure conifer forests contain a more diverse *A. cepistipes* population (three clusters). This result, however, is different using SNPs with both DAPC and STRUCTURE, evidencing only one single genetic cluster across both spatially close subpopulations of the Carpathians. It is important to note that these SNPs were initially selected from housekeeping genes present in the genomes of five fungal species other than *Armillaria* (Dutech *et al.*, 2016). Therefore, SNPs in such conserved genes may rather reflect long-term divergence among populations than recent processes. Apparently, the two Carpathian subpopulations have not yet diverged enough to reveal nucleotide differences in the genes considered.

In contrast to using SSRs, the two large-scaled subpopulations that are separated by a high mountain range (North and South of Alpine population) were assigned to two different clusters using SNPs. The two SNP loci that were mainly responsible for this discrimination were also significant outliers in ARLEQUIN (but not in BAYESCAN). This suggests that the Alpine mountain range left its traces on the long-term divergence of the northern and southern *A. cepistipes* subpopulations. The presence of only one genetic cluster in the large-scaled Alpine population based on SSRs might be at
least partially due to the particular sampling design applied. The two Alpine
subpopulations mainly share the same alleles at all 17 SSR loci. Thus, a
random sampling of distant individuals at a large spatial scale may not
accurately reveal local population allele frequencies to infer subpopulation
structure with SSRs. In contrast, scattered sampling at large scale did not
affect the discrimination power of SNPs. This is most likely because
differences among geographically distant populations in SNP loci were
fixed along an evolutionary time scale, making it easier to detect population
specific allele frequencies even with a scattered random sampling. Our
results are in agreement with those of a study on the global migration
patterns of the pathogenic crop fungus *Mycosphaerella graminicola*
(Banke and McDonald, 2005). The authors found that SSRs were sensitive
to detect recent (50-150 years) migration events between North and South
American populations, whereas protein-coding sequences loci were not.
Based on these and on our results, we conclude that SSRs have a higher
resolution for genetically and spatially close populations (as in the
Carpathian subpopulations) with extensive gene flow. In contrast, SNPs in
housekeeping genes seem to be more appropriate for phylogeographic
large-scale studies (as in the Alpine subpopulations). However, this
conclusion should be treated with caution, because our study design does
not allow disentangling the possible confound effects of sampling scale and
population-specific demography on marker performance.

In summary, the present study revealed differences on inferences of
population genetic structure of the fungus *Armillaria cepistipes* at different
spatial scales when using two different marker types (SSRs and SNPs). SSRs were found to be better suited for detecting structure in populations at a small spatial scale with a systematic and continuous sampling design (as shown in the example of the Carpathian population). The patterns observed in the SNP markers rather reflect ancient divergence of distant and naturally separated populations, being less sensitive to sampling design (as shown in the example of the Alpine population). A full factorial sampling design and a higher genomic resolution would help to strengthen the reliability of the obtained results. Nevertheless, both marker types were suitable for detecting weak genetic structure of the two fungal populations considered.

ACKNOWLEDGEMENTS

We are grateful to E. Guichoux and A. Delcamp (Genome Transcriptome Facility of INRA, Bordeaux), E. Jung (Phytopathology, WSL), and the team of the Genetic Diversity Center (GDC, ETH Zürich) for laboratory assistance and expert help. We also thank R. Holderegger for useful discussions while analyzing and interpreting results, and three anonymous referees for the critical comments on the manuscript. This work was financially supported by the Swiss Federal Research Institute WSL, by the program "Trees4Future", a project co-funded by the European Union Seventh Framework FP7 under grant agreement n° 284181, and by the Swiss Government Excellence Scholarships for Foreign Scholars and Artists for the Academic Year 2014-2015 of the State Secretariat for Education, Research and Innovation (SERI) to T. Tsykun. The *A. cepistipes*
Genome project was founded by the European Union in the frame of the Széchenyi 2020 Programme (GINOP-2.3.2-15-2016-00052) and by the WSL to G. Sipos.

DATA ARCHIVING

Genotype data have been submitted to Dryad:

CONFLICT OF INTEREST

The authors declare no conflict of interest.

REFERENCES

Table 1 Multilocus genotype summary inferred from 17 SSR and 24 SNP markers in two populations of *Armillaria cepistipes*. Ind – number of genotyped individuals; MLGs – number of multilocus genotypes; I_A and $rbar_D$ – indexes of association; $p.I_A$ and $p.rbar_D$ – corresponding P values from one-sided permutation tests for indexes of association.

17 SSR loci

<table>
<thead>
<tr>
<th>Populations:</th>
<th>Subpopulations:</th>
<th>Ind</th>
<th>MLGs</th>
<th>I_A</th>
<th>$p.I_A$</th>
<th>$rbar_D$</th>
<th>$p.rbar_D$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carpathian</td>
<td>Beech</td>
<td>160</td>
<td>130</td>
<td>0.121</td>
<td>0.022</td>
<td>0.008</td>
<td>0.020</td>
</tr>
<tr>
<td></td>
<td>Mixed/conifer</td>
<td>121</td>
<td>103</td>
<td>0.221</td>
<td>0.001</td>
<td>0.014</td>
<td>0.001</td>
</tr>
<tr>
<td>Alpine</td>
<td>North</td>
<td>62</td>
<td>62</td>
<td>0.064</td>
<td>0.190</td>
<td>0.004</td>
<td>0.189</td>
</tr>
<tr>
<td></td>
<td>South</td>
<td>64</td>
<td>64</td>
<td>-0.039</td>
<td>0.669</td>
<td>-0.002</td>
<td>0.669</td>
</tr>
<tr>
<td>Overall</td>
<td></td>
<td>407</td>
<td>359</td>
<td>0.039</td>
<td>0.122</td>
<td>0.003</td>
<td>0.119</td>
</tr>
</tbody>
</table>

24 SNP loci

<table>
<thead>
<tr>
<th>Populations:</th>
<th>Subpopulations:</th>
<th>Ind</th>
<th>MLGs</th>
<th>I_A</th>
<th>$p.I_A$</th>
<th>$rbar_D$</th>
<th>$p.rbar_D$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carpathian</td>
<td>Beech</td>
<td>160</td>
<td>87</td>
<td>-0.113</td>
<td>0.985</td>
<td>-0.005</td>
<td>0.985</td>
</tr>
<tr>
<td></td>
<td>Mixed/conifer</td>
<td>121</td>
<td>65</td>
<td>-0.047</td>
<td>0.762</td>
<td>-0.002</td>
<td>0.762</td>
</tr>
<tr>
<td>Alpine</td>
<td>North</td>
<td>62</td>
<td>62</td>
<td>-0.006</td>
<td>0.520</td>
<td>0.000</td>
<td>0.520</td>
</tr>
<tr>
<td></td>
<td>South</td>
<td>64</td>
<td>64</td>
<td>0.062</td>
<td>0.175</td>
<td>0.003</td>
<td>0.173</td>
</tr>
<tr>
<td>Overall</td>
<td></td>
<td>407</td>
<td>278</td>
<td>-0.027</td>
<td>0.799</td>
<td>-0.001</td>
<td>0.799</td>
</tr>
</tbody>
</table>
Table 2 Population specific summary statistics inferred from 17 SSR and 24 SNP loci in populations of *Armillaria cepistipes*. N – average number of alleles; Ar – average allelic richness; E – average evenness of alleles; H_{exp} – average expected heterozygosity; H_{obs} – average observed heterozygosity; ± – standard deviation

<table>
<thead>
<tr>
<th>Populations:</th>
<th>Subpopulations:</th>
<th>N</th>
<th>Ar</th>
<th>E</th>
<th>H_{exp}</th>
<th>H_{obs}</th>
</tr>
</thead>
<tbody>
<tr>
<td>17 SSR loci</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carpathian</td>
<td>Beech</td>
<td>7 ± 2</td>
<td>6 ± 2</td>
<td>0.64 ± 0.20</td>
<td>0.53 ± 0.26</td>
<td>0.46 ± 0.24</td>
</tr>
<tr>
<td></td>
<td>Mixed/conifer</td>
<td>6 ± 3</td>
<td>6 ± 2</td>
<td>0.64 ± 0.16</td>
<td>0.53 ± 0.26</td>
<td>0.45 ± 0.23</td>
</tr>
<tr>
<td>Alpine</td>
<td>North</td>
<td>6 ± 2</td>
<td>5 ± 2</td>
<td>0.67 ± 0.17</td>
<td>0.55 ± 0.24</td>
<td>0.47 ± 0.24</td>
</tr>
<tr>
<td></td>
<td>South</td>
<td>6 ± 2</td>
<td>5 ± 2</td>
<td>0.66 ± 0.16</td>
<td>0.52 ± 0.24</td>
<td>0.46 ± 0.23</td>
</tr>
<tr>
<td>24 SNP loci</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carpathians</td>
<td>Beech</td>
<td>2</td>
<td>-</td>
<td>0.76 ± 0.21</td>
<td>0.30 ± 0.16</td>
<td>0.33 ± 0.18</td>
</tr>
<tr>
<td></td>
<td>Mixed/conifer</td>
<td>2</td>
<td>-</td>
<td>0.76 ± 0.21</td>
<td>0.30 ± 0.17</td>
<td>0.31 ± 0.17</td>
</tr>
<tr>
<td>Alpine</td>
<td>North</td>
<td>2</td>
<td>-</td>
<td>0.77 ± 0.17</td>
<td>0.30 ± 0.14</td>
<td>0.34 ± 0.15</td>
</tr>
<tr>
<td></td>
<td>South</td>
<td>2</td>
<td>-</td>
<td>0.73 ± 0.19</td>
<td>0.28 ± 0.15</td>
<td>0.29 ± 0.14</td>
</tr>
</tbody>
</table>
Table 3 Comparison of pairwise F_{ST} inferred from SSR and SNP multilocus genotypes from two Carpathian and two Alpine subpopulations of *Armillaria cepistipes*. * *P* value < 0.05

<table>
<thead>
<tr>
<th>Loci:</th>
<th>17 SSRs</th>
<th>24 SNPs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Carpathian:</td>
<td>Alpine:</td>
</tr>
<tr>
<td></td>
<td>Beech</td>
<td>Mixed/ conifer</td>
</tr>
<tr>
<td>Carpathian:</td>
<td>Mixed/ conifer</td>
<td>*0.004</td>
</tr>
<tr>
<td>Alpine:</td>
<td>North</td>
<td>*0.029</td>
</tr>
<tr>
<td></td>
<td>South</td>
<td>*0.028</td>
</tr>
</tbody>
</table>
Figure 1 Geographic origin of the *Armillaria cepistipes* populations sampled in the Alps (Switzerland) and in the Carpathian mountains (Ukraine). In the lower left part of the figure, the Alpine population is shown, with the white drops indicating isolates of the North subpopulation and the green drops isolates of the South subpopulation. In the lower right part, the Carpathian population is illustrated, with the blue drops representing isolates sampled within plots (a zoomed example is shown) of the Beech subpopulation and the orange drops isolates within plots (a zoomed example is shown) of the Mixed/conifer subpopulation.
Figure 2 STRUCTURE results using 17 SSR loci and 24 SNP loci in four geographic subpopulations of Armillaria cepistipes. (A) Scatterplots with mean log-likelihood values (± standard deviation) for different numbers of clusters (K). (B) Barplots representing the average estimated membership probability (y-axis) of an individual to belong to a specific cluster (indicated by specific color).
Figure 3 Discriminant analysis of principle components (DAPC) computed with 17 SSRs and 24 SNPs in four subpopulations of *Armillaria cepistipes*. Scatterplots represent the distribution of individuals (symbols) along the axes build with the first two discriminant functions. The cross-validated principal components used in the analysis is shown in dark color in the bar plots on the top right of each scatterplot.
A. cepistipes populations

Carpathian:
1. Beech
2. Mixed/conifer

Alpine:
3. North
4. South