THE INFLUENCE OF SNOW PHYSICAL PROPERTIES ON HUMANS BREATHING INTO AN ARTIFICIAL AIR POCKET

Hannes Gatterer1,2, Giacomo Strapazzon1, Tomas Dal Cappello1, Kai Schenk1, Peter Paal2, Markus Falk1, Sandro Malacrida1, Benjamin Reuter4, Jürg Schweizer3, Hermann Brugger1

1 EURAC Institute of Mountain Emergency Medicine, Bolzano, Italy
2 Department of Sport Science, Medical Section, University of Innsbruck, Austria
3 Department of Anaesthesiology and Critical Care Medicine, Innsbruck University Hospital, Austria
4 WSL Institute for Snow and Avalanche Research SLF, Davos, Switzerland

ABSTRACT: Breathing under snow, e.g. while buried by a snow avalanche, is possible in the presence of an air pocket, but limited in time as hypoxia and hypercapnia rapidly develop. It was suspected that the snow physical properties affect the development of hypoxia and hypercapnia. The aim of this study was to evaluate the influence of different snow physical properties on the development of hypoxia and hypercapnia in subjects breathing into an artificial air pocket in snow. Twelve male healthy subjects breathed through an airtight face-mask and 40cm tube into an artificial air pocket of 4L. Every subject performed three tests on different days with varying snow characteristics. Symptoms, gas and cardiovascular parameters were monitored up to 30min. Tests were interrupted at SpO2<75% or hypercapnia (i.e. FiC02 >8%) or due to discomfort. Snow density was assessed via standard methods. In eighteen of 36 (50%) tests, subjects completed the full test duration of 30min; tests were terminated due to hypoxemia (SpO2<75%) in 13 (36%) cases and due to clinical symptoms in five (14%) cases. Changes of O2 and C02 in the air pocket were correlated with snow density (p<0.05), but not with permeability and other related measurements. A rapid decline in O2 and increase in C02 were mainly associated with higher snow densities and led to premature interruption due to critical hypoxia (SpO2<75%). In the low snow density setting a higher frequency of test interruptions than expected occurred, which was linked to clinical symptoms and rapid CO2 accumulation in the air pocket. In conclusion, snow density seems to have a direct influence on the respiratory gas concentrations and thus test duration of subjects breathing into an artificial air pocket.

KEYWORDS: Snow density, avalanche, respiratory gases.

1. INTRODUCTION

Asphyxia, i.e. hypoxia and hypercapnia, is the primary cause of death from snow avalanche (Brugger et al., 2009). Approximately 70% of completely buried avalanche victims (i.e. head and chest below the snow) die of asphyxia within 35 minutes (Brugger et al., 2001; Falk et al., 1994). However, several studies have shown that breathing under a snow layer is possible in the presence of a patent airway with or without an air pocket (i.e. any space in front of mouth and nose) (Procter et al., 2016; Roubik et al., 2015; Paal et al., 2012; Brugger et al., 2003; Grissom et al., 2000). Apart from the size of the potential air pocket, development of hypoxemia in avalanche victims could also depend upon specific snow properties (Brugger et al., 2003; Grissom et al., 2000). The aim of this experimental field study was to elucidate the effects of snow properties on the development of critical levels of hypoxia and hypercapnia in subjects breathing into an artificial air pocket; specifically focusing on the effect of differing snow densities and other snow properties on ventilation and oxygenation in humans. We hypothesized that the speed of the onset of critical physiological levels of hypoxia and hypercapnia would be dependent upon differences in specific snow properties.

2. MATERIALS AND METHODS

This randomized clinical trial was approved by the Institutional Review Board of the General Hospital of Bolzano (No. 0147248) and written informed consent was obtained from the subjects before enrollment in the study.

2.1 Subjects

The sample included 12 healthy Caucasian male volunteers (age: 33.8 ± 7.3 years, weight: 78.2 ± 8.1 kg, height: 179 ± 5.3 cm).

2.2 Design

The subjects breathed through an airtight face-mask and 40cm tube into an artificial air pocket of...
4L. Every subject performed three tests on different days with varying snow characteristics (≤250, 251–350, and >350 kg/m³). Test duration was scheduled for 30 min, but controlled with specific interruption criteria as follow: SpO₂ ≤75%; hypercapnia (i.e. fractional inspired CO₂ >8%); at the subject’s request (e.g. due to subjective symptoms like dyspnea, dizziness, and headache), or any other worrying sign of cardiopulmonary or neurologic instability.

2.3 Measurements

i. Clinical parameters
The subjects were continuously observed and monitored by an emergency physician during the test period. Non-invasive variables measured continuously included: blood pressure, 3-lead electrocardiogram, heart rate (HR) and SpO₂ (Monitor HeartStart MRx™, Philips Medical Systems, Andover, MA), breathing rate (BR), minute respiratory volume (VE) and tidal volume (VT) (Oxycon™ mobile device, CareFusion Germany 234 GmbH, Hoechberg, Germany), and main stream end-tidal carbon dioxide (etCO₂) (EMMATM Mainstream Capnometer, Masimo, Milan, Italy).

ii. Air pocket parameters
The fractional O₂ and CO₂ concentration in the air pocket was recorded continuously (X-AM 7000, Dräger, Vienna, Austria).

iii. Statistical Analysis
Difference from baseline to maximum value of breathing rate (BR), CO₂-pocket concentration, diastolic blood pressure (DBP), etCO₂, pCO₂, HR, systolic blood pressure (SBP), VE and VT, and difference from baseline to minimum value of pO₂, SpO₂ and O₂-pocket concentration were considered as variables for analysis. A general linear model with subject as random factor was performed to investigate correlation of snow physical properties (i.e., density, permeability, snow temperature, coefficient of variation of penetration resistance and standard deviation of penetration resistance) with changes in O₂- and CO₂-pocket concentrations. Tests were two-sided and p<0.05 was considered statistically significant. Values are reported as mean ± standard deviation.

3. RESULTS

3.1 Test Interruptions and test duration
In total 36 study tests were performed. Specifically, within study tests 18 out of 36 tests lasted 30 min; 13 tests were terminated prematurely due to evident hypoxaemia (peripheral oxygen saturation SpO₂ ≤75%), plus 5 tests were interrupted at the subject’s request due to clinical symptoms (dyspnea (n=3), dizziness (n=1), and dyspnea and headache (n=1)).

Time to interruption differed between the three snow density groups (p=0.002). Test interruption in the low snow density group was attributable only to clinical symptoms (dyspnea, headache, dizziness) and not due to hypoxia (SpO₂ ≤75%).

3.2 Correlation of physical snow properties with changes in O₂ and CO₂ concentration in the air pocket
Snow density was correlated with O₂-pocket and CO₂-pocket values (p<0.001). There was no correlation of either values with permeability (p>0.05) or snow temperature (p>0.05) or coefficient of variation (p>0.50) and SD of penetration resistance (p>0.05).

3.3 Individual breathing behavior
There was a progressive decrease in SpO₂ and O₂ pocket, with a parallel increase in VE and CO₂ pocket. The individual ventilatory behavior between the three snow density groups was different and reportedly nonlinear in accordance to snow density, also within the same subject.

4. DISCUSSION AND MAIN CONCLUSION
This study is the first to elucidate in detail the effects of snow properties on ventilation, oxygenation and exhaled CO₂ in subjects breathing into an artificial air pocket.

The study results confirm our hypothesis that the time to the onset of critical levels of hypoxia and hypercapnia is influenced by snow properties. Time to interruption differed, in fact, between the three snow density groups. The concentration of the respiratory gas in the air pocket, plus the consequential impact on ventilatory control was different in accordance to the snow density and also present per subject. In general, the high snow density group demonstrated a rapid decrease in O₂ pocket, plus a concomitant rapid increase in CO₂ pocket that led to a progressive hypoxic milieu and a strong compensative ventilatory response, with a trend to premature interruption due to critical hypoxia (SpO₂ ≤75%). Unexpectedly, the low snow density group showed a similar progression but with different timing and cause of interruption. The subjects of the low snow density group interrupted the test more often than expected, in all cases not due to hypoxia, but to a greater than expected increase in CO₂ and the associated clinical symptoms (dyspnea, headache, dizziness).
CONFLICT OF INTEREST
None of the authors has a conflict of interest.

5. REFERENCES

* Corresponding author address:
Hannes Gatterer, Eurac Research, Institute of Mountain Emergency Medicine, Viale Druso 1, Bolzano I-39100; tel: +39 0471 055 578; email: Hannes.gatterer@eurac.edu