Conifers depend on established roots during drought: results from a coupled model of carbon allocation and hydraulics

D. Scott Mackay1*, Philip R. Savoy2, Charlotte Grossiord3, Xiaonan Tai1, Jonathan R. Pleban1, Diane R. Wang1, Nathan G. McDowell4, Henry D. Adams5, and John S. Sperry6

1*Corresponding author; Department of Geography, University at Buffalo, Buffalo, NY, 14261, USA; dsmackay@buffalo.edu; (716) 645-0477; ORCID
2Department of Biology, Duke University, Durham, NC, 27708, USA
3Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
4Pacific Northwest National Laboratory, Richland, WA, 99354, USA
5Department of Plant Biology, Ecology, and Evolution, Oklahoma State University, Stillwater, OK, 74078, USA
6Department of Biology, University of Utah, Utah, 84112, USA

Received: 5 February 2019
Accepted: 1 July 2019

ORCID IDs: D. Scott Mackay (0000-0003-0477-9755), Diane R. Wang (0000-0002-2290-3257), Nathan G. McDowell (0000-0002-2178-2254), Henry D. Adams (0000-0001-9630-4305), John S. Sperry (0000-0001-7881-7393)

Summary
Trees may survive prolonged droughts by shifting water uptake to reliable water sources, but it is unknown if the dominant mechanism involves activating existing roots, growing new roots during drought, or some combination.

This document is the accepted manuscript version of the following article: Mackay, D. S., Savoy, P. R., Grossiord, C., Tai, X., Pleban, J. R., Wang, D. R., ... Sperry, J. S. (2019). Conifers depend on established roots during drought: results from a coupled model of carbon allocation and hydraulics. New Phytologist. https://doi.org/10.1111/nph.16043
To gain mechanistic insights on this unknown, a dynamic root-hydraulic modeling framework was developed that set up a feedback between hydraulic controls over carbon allocation and the role of root growth on soil-plant hydraulics. The new model was tested using a five-year drought/heat field experiment on an established piñon-juniper stand with root access to bedrock groundwater.

Due to the high carbon cost per unit of root area, modeled trees initialized without adequate bedrock groundwater access experienced potentially lethal declines in water potential, while all of the experimental trees maintained non-lethal water potentials. Simulated trees were unable to grow roots rapidly enough to mediate the hydraulic stress, particularly during warm droughts. Alternatively, modeled trees initiated with root access to bedrock groundwater matched the hydraulics of the experimental trees by increasing their water uptake from bedrock groundwater when soil layers dried out.

Therefore, the modeling framework identified a critical mechanism for drought response that required trees to shift water uptake among existing roots rather than growing new roots.

Key words: Carbon allocation, Drought, Warming, Fine roots, Hydraulics, Simulation, Trees

Introduction

Global climate dynamics are causing more frequent and widespread tree die-offs due to extreme droughts and higher temperatures (Adams et al., 2009; Williams et al., 2013; McDowell et al., 2016). Ability to access water from reliable sources, such as groundwater stored in bedrock fractures (McLaughlin et al., 2017), is one strategy some trees may use to survive in a warmer world with intense droughts. This is especially critical in situations of scarce precipitation (Tai et al., 2018). Plants must grow coarse root systems towards groundwater (Fan et al., 2017) and maintain sufficient absorbing fine roots to acquire the groundwater. Studies suggest that plants in drought-prone regions maintain roots specifically for accessing alternative water sources when precipitation is scarce (Dawson, 1993; Burgess et al., 1998; Jackson et al., 1999; Rose et al., 2003; Pinheiro et al., 2016; Eberbach & Burrows, 2006; David et al., 2007; Bleby et al., 2010; Miller et al., 2010; Grossiord et al., 2017a; Johnson et al., 2018). But the construction of roots carries energy costs, including the use of net primary production of carbon. Development of larger root systems requires a notable alteration of carbon allocation between aboveground and belowground organs, in what appears to be a coordinated process (Hacke et al., 2000; Magnani et al., 2002; Li & Bao, 2015). Changes in biomass partitioning likely reflect long-term adjustments or species adaptations to available water (Grier & Running, 1977; Gholz, 1982; Kozlowski & Pallardy, 2002; Hartmann, 2011) to maintain hydraulic health within the constraints of available carbon resources (Johnson et al., 2013; Mencuccini et al., 2015). Vegetation models have profited from some of this theory to account for carbon allocation to roots and leaf area.
(Fisher et al., 2018), but they do not yet integrate these dynamics with hydraulics. Thus, model development should relate carbon allocation to fine root and leaf areas, as these are both hydraulically important (Sperry et al., 2002; Comas et al., 2013).

Fine roots may play both passive and active roles in plant hydraulic status. Plant hydraulic models with segmented root systems (Sperry et al., 1998; Mackay et al., 2015; Sperry et al., 2016) currently simulate proportional changes in water uptake from different parts of the root system as a passive response to hydraulic gradients without a need for an active response once the fine (absorbing) and coarse (transport) root system is established. But the active role of fine roots during drought has also been observed. Early onset of mechanical failure of cortical cells (Cuneo et al., 2016) and the ability of some species to disconnect their fine roots from the soil under water deficit (West et al., 2007; Plaut et al., 2013) suggest that fine roots act as hydraulic fuses (Venturas et al., 2017). Control of aquaporins or changes in fine root area can also cause adjustments to hydraulic conductance (Gambetta et al., 2012; Venturas et al., 2017). To account for these active roles of fine roots, models need to define fine roots in a way that is meaningful for quantifying water uptake (McCormack et al., 2015) and integrate plant hydraulic status with a carbon-mediated growth strategy (Fisher et al., 2018; Hartmann et al., 2018).

Two challenges in building models that integrate both active and passive root functions are the apparently contradictory root growth responses to drought, and the large variability in root traits that yield similar function. Consider the first challenge. Fine root production has been shown to increase with decreasing water availability (Gower et al., 1992; Ewers et al., 2000; Barnes, 2002; Kozlowski & Pallardy, 2002; Hertel et al., 2013). Yet observed fine root biomass has also declined during drought (Joslin et al., 2000; Meier & Leuschner, 2008; Ruehr et al., 2009; Anderegg, 2012; Moser et al., 2014), likely due to various factors including a decline in net production and an increase in mortality (Aaltonen et al., 2016). Other studies found negligible changes in root growth during seasonal or long-term periods of soil water deficit (Metcalf et al., 2008; Doughty et al., 2014; Barbeta et al., 2015), suggesting that trees rely heavily on existing roots during drought. The role of a stratified root architecture having access to reliable water during drought provides a better explanation for tree survival than root-shoot ratios or biomass allocation (Padilla & Pugnaire, 2007; Doughty et al., 2014; Laclau et al., 2013), but just how much deep root area is needed is unknown. One observation that can be made from these studies is that the maintenance of roots near stable water sources reduces the need to grow new roots after the onset of drought.

This article is protected by copyright. All rights reserved.
The second challenge to building integrated models of carbon allocation and hydraulics is that each unit investment of carbon can yield different water uptake capacities (Reich et al., 1998; Bauhus & Messier, 1999; Withington et al., 2006; Bowsher et al., 2016; Kramer-Walter et al., 2016) associated with phylogenetic variations (Comas & Eissenstat, 2009; Comas et al., 2014; Ma et al., 2018). In particular the finest root diameters show a large variability among taxa, soil textures, and climates (Eissenstat et al., 2015; Liu et al., 2015; Cheng et al., 2016). For example, first-order (or finest) roots in subtropical areas can be thicker because of favorable conditions for water uptake (Chen et al., 2013), whereas temperate trees generally have thinner first-order roots (Pittermann et al., 2012). In turn, this results in different water uptake capacities per unit of carbon invested. Two widely measured traits, specific root length, a measure of root length per unit of carbon invested, and first-order and second-order root diameters, are potentially useful here because together they define root tissue density (Ostonen et al., 2007; Ma et al., 2018; see also Supplement Fig. S1). Root tissue density informs the carbon allocation needed per unit increment of root volume and, by implication, of root area. Notably, evergreen needleleaf tree root tissue densities are high relative to other taxa, as they have low specific root areas across a wide range of diameters (Supplement Fig. S1). Thus, a second observation is that specific root length and root diameter can potentially be utilized along with the observation that optimal water transport is observed when root xylem and rhizospheres are co-limiting (Sperry et al., 2002) to provide a robust link between carbon allocation and hydraulics.

Here we present a new modeling framework that addresses the first issue regarding variability in observed root growth responses to drought by allowing for transience in root growth in a feedback with the plant hydraulic system, and addresses the second issue in variation in root traits by representing the fine root system with a small number of measurable traits that can be used to translate carbon allocation into absorbing root area. We make no assumptions about root trait correlations, and instead allow the integrated dynamics of carbon allocation and hydraulic function to be an emergent response to environmental conditions. Our objective is to add mechanistic insight on fine root dynamics, associated carbon costs, and their integration with rhizosphere-plant hydraulics, specifically during hot and dry conditions. We tested the framework at a piñon-juniper site with empirical evidence of root water uptake from bedrock fractures and strong tree resistance to droughts, including warmer droughts (Grossiord et al., 2017a). To focus this study, we use the new framework to test two hypotheses: H1) trees rely on bedrock groundwater during dry periods and soil water...
during wetter periods to maintain their hydraulic status, and H2) fine roots with access to bedrock groundwater must be maintained at all times rather than grown after the onset of drought.

Materials and Methods

Study site description

This study was conducted at the Los Alamos Survival-Mortality (SUMO) experiment in New Mexico, USA (35.49°N, 106.18°W, 2175 m a.s.l). The soil is Hackroy clay loam, which is derived from volcanic tuff (Soil Survey Staff, Natural Resources Conservation Service, United States Department of Agriculture, http://websoilsurvey.nrcs.usda.gov), with an average depth of 65 cm. The volcanic-tuff at the site is fractured (Trainer, 1974), which allows tree roots to grow into the bedrock (Tierney & Foxx, 1982; Newman *et al*., 1997). Calcite precipitation in the near-surface fractures induced by root growth and decay (Newman *et al*., 1997) and isotopic signatures showing SUMO trees using water from below the soil layer (Grossiord *et al*., 2017a) support tree root access to groundwater within its seasonal range of depths within the bedrock fractures. We do not know if the bedrock water uptake is by roots alone or if it is facilitated by mycorrhizae. The dominant tree species are piñon pine (*Pinus edulis* Engelm.) and one-seed juniper (*Juniperus monosperma* (Engelm.) Sarg.). Inter-canopy spaces also contain a small amount of biomass in grass, cacti and Gambel oak. The 0.4 ha experimental site is surrounded by piñon that died during a 2002-03 drought. Mean annual temperature is 10.1°C and mean annual precipitation is 360 mm (1987-2016 mean), with about 50% falling during the North American Monsoon season from July to September (http://environweb.lanl.gov/weathermachine).

In June 2012, open-top chambers holding air temperature approximately 4.8°C above ambient and clear polymer troughs that excluded 45% of precipitation were installed to establish heat, drought, drought+heat, and untreated (or ambient) treatments for both piñon and juniper. In April 2016, the trough coverage of the drought and drought+heat structures was increased to 90% to simulate extreme drought conditions (Grossiord *et al*., 2017b). Each species-treatment had 5-6 trees with tree ages of 56 ± 5 years and 79 ± 7 years for piñon and juniper, respectively, determined from increment cores, and heights between 1.5 and 4.5 m. Micrometeorological conditions were measured continuously and recorded by two weather stations at the site (Climatronics, Bohemia, NY, USA). Atmospheric temperature and relative
humidity were measured in all chambers using C215 Campbell sensors (Campbell Scientific, Logan, UT, USA) at two positions (1m height and 2/3 of canopy height), and used for controlling industrial-scale air-conditioning units that regulated chamber temperature. No tree mortality occurred over the full study period (2012-2016). More details on the study site are provided in Adams et al. (2015).

Model development
The new modeling framework was integrated into TREES (Mackay et al., 2015), which computes soil-plant hydraulics, photosynthesis, canopy diffusive conductance (stomatal, boundary), respiration, and nonstructural carbon (NSC). TREES has been well tested to show that it can predict seasonal time series of leaf water potentials, soil water content, and canopy transpiration with input of hydraulic parameters from a single day (Mackay et al., 2015; Tai et al., 2017; Johnson et al., 2018). It is forced with observed meteorological data (temperature, wind speed, vapor pressure deficit, photosynthetically active radiation, and precipitation), and constrained with measured parameters on hydraulics, gas exchange, allometry, and root structure. TREES retains a memory of cavitation in each xylem segment, which means the maximum hydraulic conductance declines with successive droughts. Hydraulic conductance values can be recomputed from soil water potential if observed plant hydraulic status, e.g. leaf water potentials, support a post-drought recovery (Mackay et al., 2015).

In the original modeling framework root area per unit ground area was defined in each soil-root layer as a fixed multiple of leaf area index (LAI). LAI was dynamic, based on the allocation of carbon to the canopy and a simple leaf area phenology routine (Savoy & Mackay, 2015), but root area was computed by multiplying LAI by a constant root-to-leaf area scalar (Mackay et al., 2015). Carbon allocation throughout the plant was coordinated with whole-plant hydraulic conductance, \(k_p \). If \(k_p \) was less than 50% of its saturated value, then growth allocation declined at a greater than linear rate and maintenance respiration declined at a linear rate. Here we replaced the constant root-to-leaf area scalar with transient root area computed as a function of carbon allocated to fine roots and the hydraulic status of each soil-root layer. Details on this new model follow.
Root architectures are branching networks (Fig. 1a), in which the two finest root orders (*i.e.*, first order is finest) account for most of the absorbing root area (McCormack *et al.*, 2015). A branching network is cumbersome to model without detailed belowground observations, and so here we represent the root system as a series of root layers assuming well-mixed soil water content in each layer (Fig. 1b). Each layer was defined as a vector of root orders, represented as cylinders (Fig. 1c), with orders ranging in diameter from low (first order) to high (*n*th order). The soil-root volume was organized into *m* layers each with a vertical thickness given by an input root axial length, L_{ax}, and horizontal extent defined by a lateral root length, L_{lat}. The volume of soil occupied by the root system (Fig. 1b) was computed as

$$V_R = \pi \left(1 - \frac{\rho_{\text{bulk}}}{\rho_{\text{max}}} \right) \sum_{j=1}^{m} L_{lat_j}^2 L_{ax_j}$$

Eqn 1

where ρ_{bulk} is soil bulk density (g cm$^{-3}$) and ρ_{max} is the maximum density (= 2.65 g cm$^{-3}$). For example, a soil-root layer with axial and lateral root lengths of 0.1 m and 1.0 m, respectively, and a soil bulk density of 1.325 g cm$^{-3}$, has a pore volume of 0.157 m3.

We assumed root diameter scales linearly with increasing root order between the first-order root and the root collar. Each soil-root layer contained a vector of *n* (=10) root orders of diameter, d_R, with a range defined between a minimum diameter parameter, d_{min} (mm) and a maximum diameter parameter, d_{max} (mm), of the root collar or tap root. The diameter of each root order was computed as

$$d_{R_k} = d_{\text{min}} d_{\text{mult}}^{k-1}$$

Eqn 2

where $d_{\text{mult}} = \left(\frac{d_{\text{max}}}{d_{\text{min}}} \right)^{\frac{1}{n-1}}$ is the ratio of the diameter of the *k*th root order to the diameter of the *(k-1)*th root order. A root collar diameter of 40.0 mm and minimum root diameter of 0.125 mm yields $d_R = (0.125, 0.237, \ldots, 40.0)$ mm.
Total root surface area per unit ground surface area, A_R (m2 root m$^{-2}$ ground area), was computed from the amount of root carbon, C_R (gC m$^{-2}$ ground area), through a linear relationship between root length and root carbon, given by specific root length, l_{rs} (m gC$^{-1}$).

Total root area for a plant was computed as the summation of the root areas over all layers and root orders, assuming that each j,k root had the surface area equivalent of the cylinder (Fig. 1c) defined by the root circumference times its length,

$$A_R = \pi \sum_{j=1}^{m} \sum_{k=1}^{n} l_{rs,j,k} C_{R,j,k} d_k$$

Eqn 3

where $l_{rs,j,k} = \frac{l_{rs,j}}{d_{R_{mult}}}^2$, and l_{rs} was obtained empirically from fine root length divided by dry mass, of typically the finest one or two root orders. Note also that root tissue density (or carbon cost per unit root volume) can be as computed as $\left(d_k l_{rs} \right)^{-1}$ (Ostonen et al., 2007) with appropriate unit conversions. Assuming root dry biomass is 50% carbon, then if l_{rs} is 200 m gC$^{-1}$, d_{min} is 0.125 mm, d_{max} is 40 mm, and each root order is allocated 10 gC m$^{-2}$ ground area, the root area sequence would be (0.785, 0.414, 0.218, ..., 0.0025) m2 root area m$^{-2}$ ground area. In this example, the first three root orders comprise 86% of A_R. The value of d_{max} may not be readily available from data, and so it is useful to note that with 10 root orders the contribution to A_R from the first three orders is insensitive to d_{max}, especially for values greater than 20 mm.

Carbon for growth and maintenance are taken from net photosynthesis loaded into a pool of NSC. Maintenance respiration is taken from NSC prior to calculation of growth allocation, as explained in Mackay et al., (2015). Here the response rate of maintenance respiration to temperature was linearly scaled from the root value in the first-order roots to the stem rate in the tenth-order roots to yield comparatively higher maintenance costs in finer roots (Pregitzer, 1998; Makita et al., 2012). Root area dynamics were integrated with carbon allocated to roots, C_R, with the following simple first order equation with respect to time t,

$$\left(\frac{dA_R}{dt} \right)_{jk} = \left(\frac{dC_R}{dt} \right)_{jk} \pi d_k l_{rs,j,k}$$

Eqn 4
The rate of change of carbon in each root represents a balance between the allocation of new carbon and root mortality. We assumed the allocation of new carbon to each soil-root layers was proportional to the hydraulic health of the respective layers. This is supported by empirical evidence of declining root growth with soil water potential (Teskey and Hinckley, 1981), patchy root growth associated with areas of higher soil water (Hendrick and Pregitzer, 1996), and root growth dynamics associated with soil wetting and drying cycles (Joslin et al., 2000). Here plant access to water was limited by xylem hydraulic conductance (k_R) (mmol m$^{-2}$ MPa$^{-1}$) of the absorbing root of each soil-root layer, and roots growing in layers with k_R values closer to their maximum (or saturated) values were assumed to be preferentially allocated carbon:

$$
\left(\frac{dC_R}{dt} \right)_{jk} = \frac{dC_{R_{tot}}}{dt} f_k(k_R) r_k - C_{RD,k} \tag{Eqn 5a}
$$

where

$$
f_k(k_R) = \frac{(k_R/k_{R_{sat}})}{\sum_{j=1}^{m}(k_R/k_{R_{sat}})} \tag{Eqn 5b}
$$

is relative hydraulic conductance, $k_{R_{sat}}$ is the maximum xylem hydraulic conductance of the root layer, and $r_k = 0.19 - 0.02(k-1)$, where $\sum_{k=1}^{10} r_k = 1$. The constants, 0.19 and 0.02, yield a linear decline in carbon allocation with increasing root order. TREES computes unique $k_{R_{sat}}$ values for each root segment using observed well-watered hydraulic properties (i.e., transpiration, pre-dawn and midday water potentials) for the whole plant (Mackay et al., 2015). Use of r_k means that carbon is allocated proportionally to each root order such that finer roots cost more carbon, reflective of their faster turnover rate (Joslin et al., 2006; McCormack et al., 2012; Adams et al., 2013). C_{RD} is root carbon loss to mortality, computed as follows:

$$
C_{RD,k} = f_T(T_{R_j}) \frac{C_{R_k}}{\tau_{min}(\beta)^{k-1}}, T_{R_j} > 5 \tag{Eqn 5c}
$$

This article is protected by copyright. All rights reserved.
where \(f_{T_{R_j}} \left(T_{R_j} \right) = \frac{T_{R_j} - 5}{20} \), \(T_R \) is root temperature (deg C), \(\tau_{\text{min}} \) is minimum root lifespan, and \(\beta \) is the lifespan rate increase with each increment in root order. This results in faster turnover in lower root orders compared to higher root orders (Joslin et al., 2006; McCormack et al., 2012; Adams et al., 2013). \(\beta \) could be derived empirically, but it was not available for this study and so we set \(\beta = 1.25 \), a value comparable to those found empirically (e.g., McCormack et al., 2013). Root mortality was assumed to be zero until root temperature exceeds five degrees (Katajima et al., 2009), thereafter increasing linearly (McCormack and Guo, 2014) until root temperature reached 25 degrees (Katajima et al., 2009). For \(\tau_{\text{min}} = 0.75 \) years and \(T_R = 25 \) degrees the lifespan for the second order root is 0.94 years.

Simulations were run for both juniper and piñon at 30-minute time steps from January 1 2012 to December 31 2016, using meteorological forcing developed for each treatment (ambient, drought, heat, drought+heat) as follows. For drought treatments (i.e., drought and drought+heat) we reduced precipitation by 45% of ambient beginning at mid-year in 2012 and then by 90% of ambient in year 2016 to match the SUMO field experiment (Supplement Fig. 2). For heat treatments (i.e., heat and drought+heat) we increased air temperature from ambient by 4.8 K beginning mid-year in 2012. We used measurements to increase shallow (0 to 15 cm) soil temperature by an average of 3.2 K. Deep soil (15 to 65 cm) temperatures were computed with a 30-day moving average of shallow soil temperature. Heated treatment deep soil temperature averaged 1.2 K above ambient. Vapor pressure deficit of the air was adjusted from ambient by using the increased air temperature and the standard Clausius-Clapeyron equation.

Most model parameters were either site-specific or species-specific taken from the literature (Supplement Table S1). Observations of leaf area, leaf gas exchange, and water potentials, were aggregated from individual trees, weighted using their respective sapwood areas, in each treatment to yield treatment mean values (see Note S1 for details on these measurements). Fine root diameters and specific root lengths were taken from Pregitzer et al. (2002). Root carbon was distributed among two shallow soil layers (\(L_{ax} \) of 0-5 cm and 5-15 cm; \(L_{lat} \) of 300 cm), a deep soil layer (\(L_{ax} \) of 15-65 cm depth; \(L_{lat} \) of 250 cm), a taproot (\(L_{ax} \) of 65-290 cm depth; \(L_{lat} \) of 0 cm), and a bedrock layer with steady groundwater availability (\(L_{ax} \)
of 290 cm to 300 cm depth; \(L_{\text{lat}} \) of 120 cm). The main purpose of the taproot was to define dimorphic root architectures with soil layers that were hydraulically separated from the groundwater source at the bottom of the bedrock layer, as opposed to fibrous root architectures with a continuous distribution of fine roots down to the groundwater. In each layer we initialized root carbon to achieve a root area to leaf area ratio, \(R_{R/L} \), of 2.5 for juniper and 1.7 for piñon, consistent with a strategy of juniper preventing root cavitation by reducing the water uptake rate per unit of root area (Sperry \textit{et al.}, 2002; West \textit{et al.}, 2008).

At SUMO, the empirical leaf water potential data for both juniper and piñon showed evidence of cavitation reversal during monsoons in years 2012 to 2015. On the basis of these observations we forced TREES to reset the xylem water status in the simulated trees (Mackay \textit{et al.}, 2015) at the times of the apparent cavitation reversals. This occurred during monsoon each year except 2016 when there was a weak monsoon (see Supplement Table S2). Changes made to leaf and root areas since the last re-filling event were accounted for in the computation of maximum hydraulic conductance (Sperry \textit{et al.}, 1998; Mackay \textit{et al.}, 2015).

H1) Bedrock groundwater source acquisition

To test the first hypothesis that tree hydraulic status is maintained by taking up bedrock groundwater during dry periods and soil water during wetter periods we used two alternative root area schemes, one with high root area in the bedrock layer and the other with low bedrock root area (Table 1). For the high bedrock root area scheme we adjusted the carbon content of the bedrock layer roots to obtain sufficient root area with bedrock groundwater access to match simulated and measured predawn water potentials (Johnson \textit{et al.}, 2018) in the first year of simulation (2012), with the other four years used as a check on the model. Thus, for the high bedrock root area 14.4\% and 11.1\% of the initial root area for juniper and piñon, respectively, was supplied with bedrock groundwater. For simulations with low initial bedrock root area (Table 1) the carbon from the first five root orders in the 290-300 cm layer was redistributed equally among the first five root orders in the soil layers. Thus for the low bedrock root scheme only 1\% of the total initial root area had access to bedrock groundwater. In both schemes, root areas were allowed to adjust dynamically according to Eqn. 4.
H2) Rates of root growth
To test the second hypothesis that fine roots must be maintained to access bedrock groundwater because they cannot grow fast enough under drought and heat stress, we quantified how simulated roots were able to grow in the low initial bedrock root area scheme relative to their ability to affect plant water relations. We also quantified the effects of plant water relations and treatment on root growth rate, noting that root growth occurs in all layers as long as their hydraulic conductance is non-zero, and growth occurs in root orders. The link between plant water relations and root growth rate is via root carbon cost per unit increment of root area (Eqn. 4) and depends on parameters d_{min} and l_{r_1}.

Sensitivity analysis
The test for the second hypothesis hinges in part on understanding the sensitivity of computed root growth to d_{min} and l_{r_1}. The species-specific parameters taken from Pregitzer et al. (2002) yield very high root tissue densities, and in turn high carbon costs to grow roots. Yet there is potentially a large variability in carbon costs with and between taxa (Supplement Fig. S1), including taxa from which root parameters might be obtained if specific-specific ones, such as those used here from Pregitzer et al. (2002), are unavailable. Consequently, to understand how the choice of d_{min} and l_{r_1} affects simulated fine root growth, and place the simulations for juniper and piñon in a larger context, we computed bin averages of parameters based on diameter extremes as well as taxonomic classes (Table 2) from published parameter values for a large range of species (Supporting Information Dataset S1). We chose parameters for the respective families (Pinaceae and Cupressaceae) and a Sclerophyllous group to represent climatic adaptation. Extreme large diameters [$d_{\text{min}} > \text{E}(d_{\text{min}}) + \text{STD}(d_{\text{min}})$] were obtained by selecting all Evergreen Trees entries that had diameters larger than the mean plus one standard deviation. The extreme minimum values [$d_{\text{min}} < \text{E}(d_{\text{min}}) - \text{STD}(d_{\text{min}})$] were the subset of Evergreen Trees with diameters that were smaller than the mean minus one standard deviation. We parameterized root lifespan using literature values from studies using minirhizotrons to examine the lifespan of functional roots. We did not find literature values on survival rates specifically for Pinus edulis and Juniperus monosperma fine roots, but we found studies that reported short (< one year) and long (> one year) fine root lifespans (Joslin et al., 2006; Montagnoli et al., 2012), and studies with Pinus species with roots of 0.3 to 0.4 mm diameter having a lifespan of about 0.75 years (Withington et al., 2006; McCormack et al., 2012). We used 0.75 years lifespan for our 0.395 mm diameter first-order roots, noting
that shorter or longer times would make it costlier or cheaper, respectively, to grow or maintain fine roots. Root lifespans were adjusted linearly with diameter relative to the baseline 0.395. Simulations were run for five years at half-hourly time steps on the ambient treatment.

We also considered the sensitivity of A_R to choice of series used to compute r_k. For example, an alternative series described by the recursive function, $r_k = 0.5 r_{k-1}$, where $r_1 = 0.5$, would allocate 75% of root carbon increment to the first two root orders, compared to 36% allocated using Eqn. 5. The higher allocation of carbon to the first two root orders would yield a modest 76% increase in A_R increment compared to that produced with Eqn. 5 when the species-specific d_{min} and l_{n_1} (Pregitzer et al., 2002) are used. By comparison, using the extreme minimum d_{min} and l_{n_1} instead of species-specific d_{min} and l_{n_1} would triple A_R increment. Since A_R was more sensitive to the choice of parameters rather than choice of r_k series, we report sensitivity analysis based solely on the r_k series in Eqn. 5 and parameter sets selected from Table 2.

Results

H1. Bedrock groundwater source acquisition

Modeled trees with high initial bedrock root area closely followed the predawn (Fig. 2) and midday water potentials of experiment trees (Supplemental Fig. S3). Simulated canopy transpiration (E_C) closely followed the dynamics of E_C from sap flux data collected in 2016 (year 5) (Supplemental Fig. S4). Predawn water potentials remained above -5 and -3 MPa, respectively for juniper and piñon, in all treatments. Modeled trees with low initial bedrock root area had larger declines in predawn water potentials, with ambient juniper and piñon predawn water potentials reaching -9.5 MPa and -4.0 MPa, respectively, in the first year of simulation. These lower predawn values were maintained for longer periods in the drought, heat, and drought+heat treatments, and the values remained lower for the full five-year simulation. With low initial bedrock root area both species also showed increasing time spent with percent loss of conductance (PLC) in excess of 60%, a potential threshold for hydraulic failure (Adams et al., 2017), over the five years of simulation when exposed to increasing drying (drought+heat > drought > heat > ambient) (Table 3). Juniper had a notable increase in time spent with PLC > 60% in the low bedrock root area scheme, whereas the total time piñon spent at PLC > 60% was insensitive to the initialization of bedrock root area.
For the high initial bedrock root area schemes the proportion of E_C supplied by bedrock groundwater ranged, among years, from 5.5% to 19.4% for ambient juniper and 5.3% to 16.6% for ambient piñon. These numbers increased to 24.1% to 57.1% for drought+heat juniper and 20.2% to 52.5% for drought+heat piñon. Both species showed similar patterns in shallow soil and bedrock E_C water source, but during season when there were large inter-specific differences in water uptake source it was because juniper took up more bedrock groundwater and piñon took up more shallow soil water (Fig. 3). Alternatively, piñon generally supplied a larger proportion of E_C from shallow soil, especially during summer/autumn following monsoon. Bedrock groundwater uptake rapidly shifted between near zero immediately after rainfall events and high values during dry periods (Supplemental Fig. S5). Bedrock groundwater uptake was high during drier periods, e.g. the first 500-days of simulation (Supplement Fig. 2), and low during wetter periods (e.g., years 2014 and 2015). Trees initialized with low bedrock root area slowly increased groundwater uptake over time (Fig. 3, compare 2016 to 2012 red versus blue lines), although this was slower for drought+heat compared to drought.

H2. Rates of root growth

The extreme differences in leaf water potentials between rooting schemes were mediated by year five in the ambient and heat treatments, but remained pronounced in the drought and drought+heat treatments (Fig. 2). The slow adjustment in water relations follows a slow rate of change in root-to-leaf area ratios (Fig. 4). Shallow soil and bedrock layers maintained near steady state root-to-leaf area ratios ($R_{R/L}$) when initialized with high bedrock root area in the ambient and drought treatments, and trended downward in heat and heat+drought treatments. Net fine root growth in the first two root orders in the bedrock layer declined with declining leaf predawn water potential, reaching zero net growth at -7.0 MPa for juniper and -3.5 MPa for piñon (Fig. 5). Mean growth rates were reduced by at least 50% in the drought and heat treatments relative to ambient. For the heat+drought treatment there was negligible net fine root growth, except for juniper at a water potential of -1.0 MPa.

Both species showed lower mean non-structural carbon by the fifth year of simulation when exposed to increased drying (drought+heat > drought > heat > ambient) (Table 3). No simulation resulted in exceptionally low NSC, however, with values never deviating outside a range of 3% to 8% of structural carbon. Simulations initialized with low bedrock root area
This article is protected by copyright. All rights reserved.
increased water uptake from bedrock groundwater relative to piñon, particularly during winter and spring, while under heat and drought+heat treatments piñon responded by increasing water uptake from shallow soils during and after monsoons more than juniper. This is consistent with experimental observations for both species at SUMO using isotopes of water (Grossiord et al., 2017a) and for piñon in other studies (West et al., 2007a; West et al., 2007b). Juniper was more anisohydric (i.e., had more daily variation in water potential; Tardieu and Simonneau, 1998) than piñon, dried out the shallow soil layers, and thus depended on more deeply infiltrating winter rainfall as well as bedrock groundwater, as has been shown previously (Plaut et al., 2013; Grossiord et al., 2017a). These contrasting trait responses follow directly from the species’ contrasting xylem cavitation vulnerability curves (Mackay et al., 2015; Garcia-Forner et al., 2016).

Modeled trees spent an increasing amount of time at PLC > 60% with intensity of treatment (drought+heat > drought > heat > ambient) (Table 3). Piñon had PLC values that potentially predisposed them to drought-induced mortality (Adams et al., 2017) despite maintaining relatively high water potentials compared to simulations of warm droughts that did not consider bedrock groundwater (McDowell et al., 2016). Alternatively, when bedrock groundwater access was reduced, modeled trees in all treatments experienced potentially lethal predawn water potentials for extensive periods of time (Fig. 2), that were well below thresholds used previously to predict mortality (i.e., April-August mean water potentials of -5.3 MPa for juniper and -2.4 MPa for piñon; McDowell et al., 2016). Juniper responded to an impaired bedrock groundwater with a notable increase in time spent at high PLC, while piñon showed no such response. This follows from piñon’s greater ability to respond to small rainfall events that penetrate only shallow soil water layers at SUMO (Grossiord et al., 2017a) and other locations (West et al., 2007a, West et al., 2007b, Plaut et al., 2013).

H2. Rates of root growth

R_{RL} adjusted slowly (Fig. 4) because of slow root growth (Fig. 5), requiring seasons to years to change water uptake rates. The slow root growth was not attributed to a lack of carbon resources, as the biggest decline in NSC was 26% relative to the least-stressed treatment (i.e., ambient initialized with high root area in the bedrock) (Table 3). This was well below a lethal decline (Anderegg & Anderegg, 2013; Adams et al., 2017). Simulations initialized with low bedrock root area maintained relatively higher NSC because the
allocation of carbon to growth declined more rapidly than photosynthesis when PLC exceeded 50% (Mackay et al., 2015).

We considered the possibility that the slow root growth was an artifact of either model parameterization or an overly conservative algorithm for determining the allocation of NSC to growth. Two lines of evidence suggest there were no such artifacts. First, parameters that favored the highest growth rates would not have allowed root area to increase enough to mediate the effects of drought during the relative dry first 500 days of simulation. Second, the parameter set that was most favorable for high root growth rates would have more than doubled R_{RL} by the fifth year of simulation (Fig. 6), which most certainly would have overbuilt the root areas for piñon and juniper (West et al., 2008), resulting in sub-optimal water transport (Sperry et al., 2002). No matter what root trait parameter values were used the fine root growth would not do the job of maintaining tree hydraulic status after the onset of drought. Moreover, a more aggressive use of NSC for growth allocation that did not overbuild roots would have increased leaf area, contrary to observations in the experimental treatments (Adams et al., 2015; McBranch et al., 2018; McDowell et al., 2019).

The results here also lend mechanistic support to explain tree recovery post-drought. Prolonged drought inhibits the ability of trees to recover when drought is relieved, and this has been attributed to a lack of carbon sequestered during drought or to declining carbon reserves (Trugman et al. 2018). The simulations here add an additional explanation for the observed survival or mortality of piñon-juniper woodlands in particular and woody systems in general, which is that fine root growth is too slow to allow for rapid tree hydraulic recovery after drought even if drought does not cause a substantial decline in carbon reserves. Use of existing roots with access to reliable water during drought obviates the need for rapid root growth, and offers an explanation for the rapid shifts seen in water uptake sources during drought and rapid return to shallower layers following precipitation events (Dawson, 1993; Burgess et al., 1998; Joslin et al., 2000; Barton & Montagu, 2006; Metcalf et al., 2008; Bleby et al., 2010). The simulations here presume that such rapid changes are passive responses to pressure gradients. The underlying mechanisms are likely to be more complex, such as an active control over root water uptake via refilling of shallow-rooted piñon roots (West et al., 2007a) or expression of aquaporins (Gambetta et al., 2012; Venturas et al., 2017). Rapid fine root growth (Barnes, 2002; Laclau et al., 2013) may be restricted to more productive systems.
than piñon-juniper woodlands, in actively developing plants that may be more likely able to alter their R_{RL} than mature individuals.

Broader implications

As we gain an improved understanding of abiotic controls over the heterogeneity of reliable water sources to support tree survival under climate change-type droughts (McLaughlin *et al.*, 2017) there is a need for a complementary understanding of the physiological responses to these water sources. The model presented here addresses a significant knowledge gap in understanding such biotic-abiotic processes because it explicitly links carbon allocation and plant hydraulics (Fisher *et al.*, 2018; Hartmann *et al.*, 2018). This model was used to explain why trees maintain deep coarse root systems often with only small amounts of absorbing fine roots (Laclau *et al.*, 2013; Pinheiro *et al.*, 2016) to obtain a high proportion of water from deeper groundwater sources during drought (David *et al.*, 2007; Miller *et al.*, 2010; Grossiord *et al.*, 2017a). The simulations also provide a mechanistic explanation for the lack of fine root growth seen during drought (Joslin *et al.*, 2000; Metcalf *et al.*, 2008), and supports the observation that trees make sufficient carbon investments in fine roots prior to drought, enabling them to gain access to reliable water for survival during drought (Jackson *et al.*, 1999; Rose *et al.*, 2003; Eberbach & Burrows, 2006; Johnson *et al.*, 2018). The new modeling approach could be adapted for use with other hydraulically sensitive ecosystem models, and tested in a wide range of systems including where roots do not have access to reliable water sources. The modified TREES model demonstrates how fine root growth could be integrated into ecosystems models (McCormack *et al.*, 2015), and answers a broader call for constraining ecosystem models with observations (Law *et al.*, 2014).

Acknowledgements

Funded by the National Science Foundation IOS-1450679 to D.S.M. and IOS-1450650 to J.S.S. D.S.M. acknowledges additional support from NSF IOS-1444571 and IOS-1547796. NGM relied on support from Pacific Northwest National Lab’s LDRD program. CG was supported by the Swiss National Science Foundation SNF (5231.00639.001.01). The contents of this manuscript reflect the views of the authors and do not necessarily reflect the views of the aforementioned funding agencies. Three anonymous reviewers are thanked for comments that improved the manuscript. TREES model code and input files for this study are available at https://github.com/dscottmackay/root_growth_TREES_paper.
Author contributions

D.S.M. led model theory development, developed the model, and wrote the manuscript; P.R.S. assisted with model theory development and edited the manuscript; J.R.P., X.T., and D.R.W. assisted with model development and edited the manuscript; C.G., H.D.A. and N.G.M. designed the field experiment, conducted fieldwork, and edited the manuscript; J.S.S. helped with conceptual design of the model and edited the manuscript.

References Cited

Supporting Information Brief Legends:

Dataset S1 Fine root data compiled for species spanning a wide range of families and lifeforms.

Fig. S1 Specific root length and root diameter data based on first- and second-order fine roots.

Fig. S2 Daily total precipitation and midday vapor pressure deficit for ambient, drought, and heat treatments.

Fig. S3 Simulated versus observed water potentials by species, plot-treatment, for predawn and midday simulations.

Fig. S4 Transpiration by species-treatment for year 2016, days 61 through 262, using sap flux data collected at SUMO.

Fig. S5 Rhizosphere flux in the bedrock layer by species and plot-treatment.

Notes S1 Data collection methods at SUMO.

Table S1 Parameters used in TREES for each species.

Table S2 Dates used to force xylem refilling by species, year, and plot.
Table 1. Root area (A_R) distributions for the high and low bedrock root area schemes by species at initialization of the simulations.

<table>
<thead>
<tr>
<th>Species</th>
<th>Root Layer</th>
<th>Depth Range (cm)</th>
<th>High Bedrock A_R (%) of root area</th>
<th>Low Bedrock A_R (%) of root area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Juniper</td>
<td>Shallow soil</td>
<td>0 to 5</td>
<td>12.0</td>
<td>15.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5 to 15</td>
<td>17.6</td>
<td>24.9</td>
</tr>
<tr>
<td></td>
<td>Deep soil</td>
<td>15 to 65</td>
<td>55.8</td>
<td>58.0</td>
</tr>
<tr>
<td></td>
<td>Tap root</td>
<td>65 to 290</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td></td>
<td>Bedrock</td>
<td>290 to 300</td>
<td>14.4</td>
<td>1.0</td>
</tr>
<tr>
<td>Piñon</td>
<td>Shallow soil</td>
<td>0 to 5</td>
<td>12.2</td>
<td>16.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5 to 15</td>
<td>24.3</td>
<td>25.0</td>
</tr>
<tr>
<td></td>
<td>Deep soil</td>
<td>15 to 65</td>
<td>52.2</td>
<td>57.7</td>
</tr>
<tr>
<td></td>
<td>Tap root</td>
<td>65 to 290</td>
<td>0.2</td>
<td>0.3</td>
</tr>
<tr>
<td></td>
<td>Bedrock</td>
<td>290 to 300</td>
<td>11.1</td>
<td>1.0</td>
</tr>
</tbody>
</table>
Table 2. Fine root parameters for computing root dynamics in TREES are root diameter, \(d_{\text{min}} \), specific root length, \(l_{\text{rs}} \), and lifespan, \(\tau_{\text{min}} \), representing the lifespan of the roots at \(d_{\text{min}} \).

<table>
<thead>
<tr>
<th>Taxonomic Classification</th>
<th>(d_{\text{min}}) (mm)</th>
<th>(l_{\text{rs}}) (m g(^{-1}))</th>
<th>RTD (gC cm(^{-3}))</th>
<th>(N)</th>
<th>(\tau_{\text{min}}) (years)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pinaceae</td>
<td>0.47</td>
<td>32.86</td>
<td>0.022</td>
<td>31</td>
<td>0.89</td>
</tr>
<tr>
<td>Cupressaceae</td>
<td>0.68</td>
<td>14.69</td>
<td>0.024</td>
<td>6</td>
<td>1.29</td>
</tr>
<tr>
<td>Sclerophyllous</td>
<td>0.44</td>
<td>30.00</td>
<td>0.027</td>
<td>1</td>
<td>0.84</td>
</tr>
<tr>
<td>Pinus edulis</td>
<td>0.40</td>
<td>22.00</td>
<td>0.045</td>
<td>1</td>
<td>0.76</td>
</tr>
<tr>
<td>Juniperus monosperma</td>
<td>0.39</td>
<td>23.00</td>
<td>0.045</td>
<td>1</td>
<td>0.74</td>
</tr>
<tr>
<td>(d_{\text{min}} > E(d_{\text{min}}) + \text{STD}(d_{\text{min}}))</td>
<td>0.87</td>
<td>12.26</td>
<td>0.017</td>
<td>28</td>
<td>1.65</td>
</tr>
<tr>
<td>(d_{\text{min}} < E(d_{\text{min}}) - \text{STD}(d_{\text{min}}))</td>
<td>0.18</td>
<td>87.33</td>
<td>0.056</td>
<td>28</td>
<td>0.34</td>
</tr>
</tbody>
</table>

The parameters are derived by taking the means from taxonomic classes in a database of about 900 entries, which was assembled from the literature for this study\(^1\). The number, \(N \), of samples from the database is shown. Minimum lifespan was computed as a linear function of \(\text{RD} \), \(\tau_{\text{min}} = 0.75 \times 0.395 / d_{\text{min}} \). Root tissue density, \(\text{RTD} = (d_{\text{min}} \times l_{\text{rs}})^{-1} \) with appropriate unit conversions. The extreme diameter (0.87 and 0.18 mm) classes were computed from all Evergreen Trees in the database (\(N = 180 \)).

\(^1\)Note that there is also a published database on fine root traits, FRED (https://roots.ornl.gov/).
Table 3. Time spent at percent loss of conductance (PLC) higher than 60% over the full five years of simulation (2002 – 2006), and average non-structural carbon in the fifth year of simulation (2016) among species, treatment, and initial amount of root area within the bedrock layer.

<table>
<thead>
<tr>
<th>Species</th>
<th>Initial bedrock root % of total root area</th>
<th>Treatment</th>
<th>Time at PLC > 60% % of 1827 days</th>
<th>2016 Avg. NSC gC m⁻²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Piñon 11.1</td>
<td>Ambient</td>
<td>36.8</td>
<td>248.3</td>
<td></td>
</tr>
<tr>
<td>Piñon 11.1</td>
<td>Drought</td>
<td>80.3</td>
<td>185.5</td>
<td></td>
</tr>
<tr>
<td>Piñon 11.1</td>
<td>Heat</td>
<td>49.6</td>
<td>181.3</td>
<td></td>
</tr>
<tr>
<td>Piñon 11.1</td>
<td>Drought+Heat</td>
<td>94.3</td>
<td>175.0</td>
<td></td>
</tr>
<tr>
<td>Piñon 1.0</td>
<td>Ambient</td>
<td>37.0</td>
<td>384.8</td>
<td></td>
</tr>
<tr>
<td>Piñon 1.0</td>
<td>Drought</td>
<td>81.0</td>
<td>221.6</td>
<td></td>
</tr>
<tr>
<td>Piñon 1.0</td>
<td>Heat</td>
<td>49.0</td>
<td>249.9</td>
<td></td>
</tr>
<tr>
<td>Piñon 1.0</td>
<td>Drought+Heat</td>
<td>93.2</td>
<td>181.7</td>
<td></td>
</tr>
<tr>
<td>Juniper 14.4</td>
<td>Ambient</td>
<td>4.2</td>
<td>280.8</td>
<td></td>
</tr>
<tr>
<td>Juniper 14.4</td>
<td>Drought</td>
<td>10.3</td>
<td>189.4</td>
<td></td>
</tr>
<tr>
<td>Juniper 14.4</td>
<td>Heat</td>
<td>6.4</td>
<td>188.2</td>
<td></td>
</tr>
<tr>
<td>Juniper 14.4</td>
<td>Drought+Heat</td>
<td>11.4</td>
<td>179.4</td>
<td></td>
</tr>
<tr>
<td>Juniper 1.0</td>
<td>Ambient</td>
<td>14.1</td>
<td>413.1</td>
<td></td>
</tr>
<tr>
<td>Juniper 1.0</td>
<td>Drought</td>
<td>42.3</td>
<td>210.4</td>
<td></td>
</tr>
<tr>
<td>Juniper 1.0</td>
<td>Heat</td>
<td>22.8</td>
<td>254.9</td>
<td></td>
</tr>
</tbody>
</table>

The NSC values range from 8% of biomass in the simulations of ambient treatments to 3% in the drought+heat treatments. By comparison, observations of NSC at SUMO in June 2013 showed ambient values of 10.9% (piñon) and 4.6% (juniper), with values falling to 5.4% (piñon) and remaining unchanged (juniper) in drought+heat treatments (Adams et al., 2015, Supplement Tables S4 and S5). These relative differences remained through 2016 with generally no decline in NSC (McDowell et al., 2019).
List of Figures

Fig. 1 A simple conceptual model of a branching root system (a) with lower order roots representing fine roots. By summing all lengths within each respective order the branching system can be simplified into a vector of root orders each with a quantifiable specific root length, root diameter, and root lifespan. A vector of root orders is associated with each soil-root layer (b) with axial \(L_{ax} \) and lateral lengths \(L_{la} \). For each root order the surface area of a cylinder defines the order’s contribution to absorbing root area, given carbon content \(C_R \), specific root length \(l_{rs} \), and diameter \(d_R \).

Fig. 2 Simulated predawn water potential \(\Psi_{Pd} \) for juniper (a) and piñon (b) for the five year SUMO experiment. Plots show simulations with high and low amounts of initial root area within the bedrock layer. Circles are observed predawn water potentials. The numbers in blue, shown within the ambient panels, are ambient annual precipitation amounts, while the numbers in red, shown in the drought panels, are the experimental drought annual precipitation amounts.

Fig. 3 Relative contributions of bedrock and shallow soil to canopy transpiration, \(E_C \). Simulations are aggregated to three-month groups (jfm = January, February, March; jas = July, August, September). Blue and red lines represent high and low initial bedrock root area simulations, respectively. Solid lines are bedrock water uptake and dashed lines are shallow soil water uptake. Darker blue shade boxes indicate where groundwater uptake by one species exceeded that by the other species by more than 10% of \(E_C \), based on the fluxes from the low initial bedrock root area simulations. Darker brown shade boxes indicate where shallow soil water uptake by one species exceeded the other species by more than 10% of \(E_C \), also for the simulations initialized with low bedrock root area. The lighter shade boxes indicate where the respective fluxes differ by more than 8% but less than 10% of \(E_C \). All differences less than or equal to 8% of \(E_C \) are not highlighted. The labels, a-c, are used to highlight periods where significant differences in water uptake reported by Grossiord et al. (2017a) using water isotopes are reproduced by these simulations. Specifically, (a) shows relatively higher bedrock water uptake by juniper in the drought treatments during a normal year (i.e., 2014); (b) shows juniper increasing its uptake of shallow soil in the heat treatment compared to ambient treatment, while piñon does not (i.e., small difference between red and blue dashed...
lines); and (c) shows that piñon uses more shallow water during the fall recover period in wet years (i.e., 2015) compared to dry years (i.e., 2013).

Fig. 4 Simulated root-to-leaf area ratios ($R_{R/L}$) for juniper (a) and piñon (b), initializing TREES with high (14.4% for juniper, 11.1% for piñon) and low (1% for both species) of the root area with access to bedrock groundwater. The seasonal cycle is dominated by the change in leaf area associated with leaf phenology. Total $R_{R/L}$ by plot can be computed by summing shallow, deep, and bedrock values at a given point in time.

Fig. 5 Simulated relative rate of growth of juniper (a) and piñon (b) first- and second-order roots (summed) in the bedrock layer as a function of mean predawn water potential. Results are for simulations that were initialized with one percent of fine roots in the bedrock and then roots were allowed to grow. Open circles and dashed lines had reduced precipitation, and red circles and represented heat treatment. Growth was computed as the difference in sum of first- and second-order root carbon content between consecutive days. The mean of these results was then computed for each bin of predawn water potential, with steps of 0.4 and 1.0 MPa for piñon and juniper, respectively.

Fig. 6 Variability of juniper (a) and piñon (b) root growth in shallow soil, deep soil, and bedrock layers in response to differences in root diameter, specific root length, and minimum root lifespan parameters. The ‘family’ simulations used aggregate parameters for the respective families for the species, ‘sclerophyll’ represents dry-adapted woody species, ‘species’ represents the respective species level observations, and ‘large diameter’ and ‘small diameter’ aggregate the parameters by taking the cluster of data from above and below the mean plus one standard deviation or mean minus one standard deviation, respectively, of the root diameters. Roots are grown using the SUMO ambient plot conditions over five years.