Query

Active Filters

  • (-) WSL Research Units = Mountain Hydrology and Mass Movements
  • (-) Publication Year = 2019
  • (-) Keywords ≠ PREVAH model
  • (-) WSL Authors ≠ Malle, Johanna T.
  • (-) Publication Type ≠ Book Chapter
Search Results 61 - 80 of 100
Select Page
Instruments and methods: hot-water borehole drilling at a high-elevation debris-covered glacier
Miles, K. E., Miles, E. S., Hubbard, B., Quincey, D. J., Rowan, A. V., & Pallett, M. (2019). Instruments and methods: hot-water borehole drilling at a high-elevation debris-covered glacier. Journal of Glaciology, 65(253), 822-832. https://doi.org/10.1017/jog.2019.49
Surface and subsurface hydrology of debris-covered Khumbu Glacier, Nepal, revealed by dye tracing
Miles, K. E., Hubbard, B., Quincey, D. J., Miles, E. S., Irvine-Fynn, T. D. L., & Rowan, A. V. (2019). Surface and subsurface hydrology of debris-covered Khumbu Glacier, Nepal, revealed by dye tracing. Earth and Planetary Sciences Letters, 513, 176-186. https://doi.org/10.1016/j.epsl.2019.02.020
Subseasonal hydrometeorological ensemble predictions in small- and medium-sized mountainous catchments: benefits of the NWP approach
Monhart, S., Zappa, M., Spirig, C., Schär, C., & Bogner, K. (2019). Subseasonal hydrometeorological ensemble predictions in small- and medium-sized mountainous catchments: benefits of the NWP approach. Hydrology and Earth System Sciences, 23(1), 493-513. https://doi.org/10.5194/hess-23-493-2019
Snow microwave complex permittivity measured with resonator sensors
Naderpour, R., Schwank, M., & Houtz, D. (2019). Snow microwave complex permittivity measured with resonator sensors. In 2019 IEEE international geoscience and remote aensing symposium. Proceedings (pp. 3978-3981). https://doi.org/10.1109/IGARSS.2019.8900530
Field calibration of the Swiss plate geophone system at the Albula stream and comparison with controlled flume experiments
Nicollier, T., Rickenmann, D., & Hartlieb, A. (2019). Field calibration of the Swiss plate geophone system at the Albula stream and comparison with controlled flume experiments (p. 8 pp.). Presented at the SEDHYD 2019. .
Bias correction of airborne thermal infrared observations over forests using melting snow
Pestana, S., Chickadel, C. C., Harpold, A., Kostadinov, T. S., Pai, H., Tyler, S., … Lundquist, J. D. (2019). Bias correction of airborne thermal infrared observations over forests using melting snow. Water Resources Research, 55(12), 11331-11343. https://doi.org/10.1029/2019WR025699
Topographic controls on the extension and retraction of flowing streams
Prancevic, J. P., & Kirchner, J. W. (2019). Topographic controls on the extension and retraction of flowing streams. Geophysical Research Letters, 46(4), 2084-2092. https://doi.org/10.1029/2018GL081799
Small scale debris-flow experiments on run-up height
Rickenmann, D., Karrer, T., McArdell, B., & Scheidl, C. (2019). Small scale debris-flow experiments on run-up height. In J. W. Kean, J. A. Coe, P. M. Santi, & B. K. Guillen (Eds.), Association of environmental and engineering geologists special publication: Vol. 28. Debris-flow hazards mitigation: mechanics, monitoring, modeling, and assessment (pp. 414-420). https://doi.org/10.25676/11124/173191
Schützt der Wald vor Rutschungen? Hinweise aus der WSL-Rutschungsdatenbank
Rickli, C., Graf, F., Bebi, P., Bast, A., Loup, B., & McArdell, B. (2019). Schützt der Wald vor Rutschungen? Hinweise aus der WSL-Rutschungsdatenbank. Schweizerische Zeitschrift für Forstwesen, 170(6), 310-317. https://doi.org/10.3188/szf.2019.0310
Characterization of wood-laden flows in rivers
Ruiz-Villanueva, V., Mazzorana, B., Bladé, E., Bürkli, L., Iribarren-Anacona, P., Mao, L., … Wohl, E. (2019). Characterization of wood-laden flows in rivers. Earth Surface Processes and Landforms, 44, 1694-1709. https://doi.org/10.1002/esp.4603
An optimized snowmelt lysimeter system for monitoring melt rates and collecting samples for stable water isotope analysis
Rücker, A., Zappa, M., Boss, S., & von Freyberg, J. (2019). An optimized snowmelt lysimeter system for monitoring melt rates and collecting samples for stable water isotope analysis. Journal of Hydrology and Hydromechanics, 67, 20-31. https://doi.org/10.2478/johh-2018-0007
Monitoring snowpack outflow volumes and their isotopic composition to better understand streamflow generation during rain-on-snow events
Rücker, A., Boss, S., Kirchner, J. W., & von Freyberg, J. (2019). Monitoring snowpack outflow volumes and their isotopic composition to better understand streamflow generation during rain-on-snow events. Hydrology and Earth System Sciences, 23(7), 2983-3005. https://doi.org/10.5194/hess-23-2983-2019
Large-scale field tests on impulse waves
Sauter, E., Fuchs, H., Schmocker, L., Volkwein, A., Prohaska, Y., & Boes, R. M. (2019). Large-scale field tests on impulse waves. In Proceedings of the IAHR world congress. E-proceedings of the 38th IAHR world congress (pp. 727-739).
The role of glacier retreat for Swiss hydropower production
Schaefli, B., Manso, P., Fischer, M., Huss, M., & Farinotti, D. (2019). The role of glacier retreat for Swiss hydropower production. Renewable Energy, 132, 615-627. https://doi.org/10.1016/j.renene.2018.07.104
Debris-flow behavior in super- and subcritical conditions
Scheidl, C., McArdell, B., Nagl, G., & Rickenmann, D. (2019). Debris-flow behavior in super- and subcritical conditions. In J. W. Kean, J. A. Coe, P. M. Santi, & B. K. Guillen (Eds.), Association of environmental and engineering geologists special publication: Vol. 28. Debris-flow hazards mitigation: mechanics, monitoring, modeling, and assessment (pp. 437-442). https://doi.org/10.25676/11124/173187
"Tau-Omega" - and two-stream emission models applied to close-range and SMOS measurements
Schwank, M., Li, X., Kerr, Y., Naderpour, R., Mätzler, C., & Wigneron, J. P. (2019). "Tau-Omega" - and two-stream emission models applied to close-range and SMOS measurements. In 2019 IEEE international geoscience and remote aensing symposium. Proceedings (pp. 6158-6161). https://doi.org/10.1109/IGARSS.2019.8898225
The demographics of water: a review of water ages in the critical zone
Sprenger, M., Stumpp, C., Weiler, M., Aeschbach, W., Allen, S. T., Benettin, P., … Werner, C. (2019). The demographics of water: a review of water ages in the critical zone. Reviews of Geophysics, 57(3), 800-834. https://doi.org/10.1029/2018RG000633
Verkleinerungsprozesse von Schwemmholz bei Hochwasser
Steeb, N. (2019). Verkleinerungsprozesse von Schwemmholz bei Hochwasser. Ingenieurbiologie: Mitteilungsblatt (1), 7-13.
Supraglacial ice cliffs and ponds on debris-covered glaciers: spatio-temporal distribution and characteristics
Steiner, J. F., Buri, P., Miles, E. S., Ragettli, S., & Pellicciotti, F. (2019). Supraglacial ice cliffs and ponds on debris-covered glaciers: spatio-temporal distribution and characteristics. Journal of Glaciology, 65(252), 617-632. https://doi.org/10.1017/jog.2019.40
Wavelet scale variance analysis of wind extremes in mountainous terrains
Telesca, L., Guignard, F., Helbig, N., & Kanevski, M. (2019). Wavelet scale variance analysis of wind extremes in mountainous terrains. Energies, 12(16), 3048 (10 pp.). https://doi.org/10.3390/en12163048