Active Filters

  • (-) WSL Research Units ≠ Snow and Atmosphere
  • (-) Keywords = debris flow
Search Results 1 - 20 of 57
Select Page
Repose time patterns of debris-flow events in alpine catchments
Heiser, M., Schlögl, M., Spangl, B., Fuchs, S., Rickenmann, D., Zimmermann, M., & Scheidl, C. (2023). Repose time patterns of debris-flow events in alpine catchments. Earth Surface Processes and Landforms, 48(5), 1034-1051. https://doi.org/10.1002/esp.5533
The Illgraben torrent system
McArdell, B. W., & Sartori, M. (2021). The Illgraben torrent system. In E. Reynard (Ed.), World geomorphological landscapes. Landscapes and landforms of Switzerland (pp. 367-378). https://doi.org/10.1007/978-3-030-43203-4_25
The role of the phase shift of fine particles on debris flow behavior: an numerical simulation for a debris flow in Illgraben, switzerland
Uchida, T., Nishiguchi, Y., McArdell, B. W., & Satofuka, Y. (2021). The role of the phase shift of fine particles on debris flow behavior: an numerical simulation for a debris flow in Illgraben, switzerland. Canadian Geotechnical Journal, 58(1), 23-34. https://doi.org/10.1139/cgj-2019-0452
Case report: optimization of topographic change detection with UAV structure-from-motion photogrammetry through survey co-alignment
de Haas, T., Nijland, W., McArdell, B. W., & Kalthof, M. W. M. L. (2021). Case report: optimization of topographic change detection with UAV structure-from-motion photogrammetry through survey co-alignment. Frontiers in Remote Sensing, 2, 626810 (9 pp.). https://doi.org/10.3389/frsen.2021.626810
Runoff-generated debris flows: Observation of initiation conditions and erosion–deposition dynamics along the channel at Cancia (eastern Italian Alps)
Simoni, A., Bernard, M., Berti, M., Boreggio, M., Lanzoni, S., Stancanelli, L. M., & Gregoretti, C. (2020). Runoff-generated debris flows: Observation of initiation conditions and erosion–deposition dynamics along the channel at Cancia (eastern Italian Alps). Earth Surface Processes and Landforms, 45(14), 3556-3571. https://doi.org/10.1002/esp.4981
The Swiss flood and landslide damage database: normalisation and trends
Andres, N., & Badoux, A. (2019). The Swiss flood and landslide damage database: normalisation and trends. Journal of Flood Risk Management, 12(S1), e12510 (12 pp.). https://doi.org/10.1111/jfr3.12510
Debris-flow monitoring and warning: review and examples
Hürlimann, M., Coviello, V., Bel, C., Guo, X., Berti, M., Graf, C., … Yin, H. Y. (2019). Debris-flow monitoring and warning: review and examples. Earth-Science Reviews, 199, 102981 (26 pp.). https://doi.org/10.1016/j.earscirev.2019.102981
Small scale debris-flow experiments on run-up height
Rickenmann, D., Karrer, T., McArdell, B., & Scheidl, C. (2019). Small scale debris-flow experiments on run-up height. In J. W. Kean, J. A. Coe, P. M. Santi, & B. K. Guillen (Eds.), Association of environmental and engineering geologists special publication: Vol. 28. Debris-flow hazards mitigation: mechanics, monitoring, modeling, and assessment (pp. 414-420). https://doi.org/10.25676/11124/173191
Characterization of wood-laden flows in rivers
Ruiz-Villanueva, V., Mazzorana, B., Bladé, E., Bürkli, L., Iribarren-Anacona, P., Mao, L., … Wohl, E. (2019). Characterization of wood-laden flows in rivers. Earth Surface Processes and Landforms, 44, 1694-1709. https://doi.org/10.1002/esp.4603
Deciphering debris-flow seismograms at Illgraben, Switzerland
Wenner, M., Walter, F., McArdell, B., & Farinotti, D. (2019). Deciphering debris-flow seismograms at Illgraben, Switzerland. In J. W. Kean, J. A. Coe, P. M. Santi, & B. K. Guillen (Eds.), Association of environmental and engineering geologists special publication: Vol. 28. Debris-flow hazards mitigation: mechanics, monitoring, modeling, and assessment (pp. 222-229). Association of Environmental and Engineering Geologists.
Using the monoplotting technique for documenting and analyzing natural hazard events
Conedera, M., Bozzini, C., Ryter, U., Bertschinger, T., & Krebs, P. (2018). Using the monoplotting technique for documenting and analyzing natural hazard events. In J. Simão Antunes Do Carmo (Ed.), IntechOpen. Natural hazards: risk assessment and vulnerability reduction (pp. 107-108). https://doi.org/10.5772/intechopen.77321
Ecosystem-based disaster risk reduction in mountains
Moos, C., Bebi, P., Schwarz, M., Stoffel, M., Sudmeier-Rieux, K., & Dorren, L. (2018). Ecosystem-based disaster risk reduction in mountains. Earth-Science Reviews, 177, 497-513. https://doi.org/10.1016/j.earscirev.2017.12.011
Automatic identification of alpine mass movements by a combination of seismic and infrasound sensors
Schimmel, A., Hübl, J., McArdell, B., & Walter, F. (2018). Automatic identification of alpine mass movements by a combination of seismic and infrasound sensors. Sensors, 18(5), 1658 (19 pp.). https://doi.org/10.3390/s18051658
Linking rainfall-induced landslides with debris flows runout patterns towards catchment scale hazard assessment
Fan, L., Lehmann, P., McArdell, B., & Or, D. (2017). Linking rainfall-induced landslides with debris flows runout patterns towards catchment scale hazard assessment. Geomorphology, 280, 1-15. https://doi.org/10.1016/j.geomorph.2016.10.007
3D dynamics of debris flows quantified at sub-second intervals from laser profiles
Jacquemart, M., Meier, L., Graf, C., & Morsdorf, F. (2017). 3D dynamics of debris flows quantified at sub-second intervals from laser profiles. Natural Hazards, 89(2), 785-800. https://doi.org/10.1007/s11069-017-2993-1
Methods of data processing for debris flow seismic warning
Arattano, M., Coviello, V., Abancó, C., Hürlimann, M., & McArdell, B. W. (2016). Methods of data processing for debris flow seismic warning. International Journal of Erosion Control Engineering, 9(3), 114-121. https://doi.org/10.13101/ijece.9.114
Dispersive pressure, boundary jerk and configurational changes in debris flows
Bartelt, P., McArdell, B., Graf, C., Christen, M., & Buser, O. (2016). Dispersive pressure, boundary jerk and configurational changes in debris flows. International Journal of Erosion Control Engineering, 9(1), 1-6. https://doi.org/10.13101/ijece.9.1
Reply to "Discussion of "The relation between dilatancy, effective stress and dispersive pressure in granular avalanches" by P. Bartelt and O. Buser (DOI: 10.1007/s11440-016-0463-7)" by Richard Iverson and David L. George (DOI: 10.1007/s11440-016-0502-4)
Bartelt, P., & Buser, O. (2016). Reply to "Discussion of "The relation between dilatancy, effective stress and dispersive pressure in granular avalanches" by P. Bartelt and O. Buser (DOI: 10.1007/s11440-016-0463-7)" by Richard Iverson and David L. George (DOI: 10.1007/s11440-016-0502-4). Acta Geotechnica, 11(6), 1469-1473. https://doi.org/10.1007/s11440-016-0503-3
A comparison of physical and computer-based debris flow modelling of a deflection structure at Illgraben, Switzerland
Berger, C., Christen, M., Speerli, J., Lauber, G., Ulrich, M., & McArdell, B. W. (2016). A comparison of physical and computer-based debris flow modelling of a deflection structure at Illgraben, Switzerland. In G. Koboltschnig (Ed.), 13th congress INTERPRAEVENT 2016. 30 May to 2 June 2016. Lucerne, Switzerland. Conference proceedings "Living with natural risks" (pp. 212-220).
Integrated natural hazards protection concept Vitznau LU - case study Plattenbach
Hohermuth, B., Graf, C., & Heilig, J. (2016). Integrated natural hazards protection concept Vitznau LU - case study Plattenbach. In G. Koboltschnig (Ed.), 13th congress INTERPRAEVENT 2016. 30 May to 2 June 2016. Lucerne, Switzerland. Conference proceedings "Living with natural risks" (pp. 535-543).