Active Filters

  • (-) Funding (EC, SNSF) = Snow distribution dynamics under forest canopy
Search Results 1 - 5 of 5
  • RSS Feed
Select Page
Resolving small‐scale forest snow patterns using an energy‐balance snow model with a 1‐layer canopy
Mazzotti, G., Essery, R., Moeser, C. D., & Jonas, T. (2020). Resolving small‐scale forest snow patterns using an energy‐balance snow model with a 1‐layer canopy. Water Resources Research, 56(1), e2019WR026129 (22 pp.). https://doi.org/10.1029/2019WR026129
Representing spatial variability of forest snow: implementation of a new interception model
Moeser, D., Mazzotti, G., Helbig, N., & Jonas, T. (2016). Representing spatial variability of forest snow: implementation of a new interception model. Water Resources Research, 52(2), 1208-1226. https://doi.org/10.1002/2015WR017961
Improved snow interception modeling using canopy parameters derived from airborne LiDAR data
Moeser, D., Stähli, M., & Jonas, T. (2015). Improved snow interception modeling using canopy parameters derived from airborne LiDAR data. Water Resources Research, 51(7), 5041-5059. https://doi.org/10.1002/2014WR016724
Novel forest structure metrics from airborne LiDAR data for improved snow interception estimation
Moeser, D., Morsdorf, F., & Jonas, T. (2015). Novel forest structure metrics from airborne LiDAR data for improved snow interception estimation. Agricultural and Forest Meteorology, 208, 40-49. https://doi.org/10.1016/j.agrformet.2015.04.013
Canopy closure, LAI and radiation transfer from airborne LiDAR synthetic images
Moeser, D., Roubinek, J., Schleppi, P., Morsdorf, F., & Jonas, T. (2014). Canopy closure, LAI and radiation transfer from airborne LiDAR synthetic images. Agricultural and Forest Meteorology, 197, 158-168. https://doi.org/10.1016/j.agrformet.2014.06.008