Active Filters

  • (-) … = wsl-units:11
Search Results 1 - 20 of 757

Pages

  • RSS Feed
Select Page
Influence of meteorological conditions on artificial ice reservoir (Icestupa) evolution
Balasubramanian, S., Hoelzle, M., Lehning, M., Bolibar, J., Wangchuk, S., Oerlemans, J., & Keller, F. (2022). Influence of meteorological conditions on artificial ice reservoir (Icestupa) evolution. Frontiers in Earth Science, 9, 771342 (17 pp.). https://doi.org/10.3389/feart.2021.771342
Inishell 2.0: semantically driven automatic GUI generation for scientific models
Bavay, M., Reisecker, M., Egger, T., & Korhammer, D. (2022). Inishell 2.0: semantically driven automatic GUI generation for scientific models. Geoscientific Model Development, 15(2), 365-378. https://doi.org/10.5194/gmd-15-365-2022
Standardized monitoring of permafrost thaw: a user-friendly, multiparameter protocol
Boike, J., Chadburn, S., Martin, J., Zwieback, S., Althuizen, I. H. J., Anselm, N., … Wilcox, E. J. (2022). Standardized monitoring of permafrost thaw: a user-friendly, multiparameter protocol. Arctic Science, 8(1), 153-182. https://doi.org/10.1139/as-2021-0007
Homogeneity assessment of Swiss snow depth series: comparison of break detection capabilities of (semi-)automatic homogenization methods
Buchmann, M., Coll, J., Aschauer, J., Begert, M., Brönnimann, S., Chimani, B., … Marty, C. (2022). Homogeneity assessment of Swiss snow depth series: comparison of break detection capabilities of (semi-)automatic homogenization methods. Cryosphere, 16(6), 2147-2161. https://doi.org/10.5194/tc-16-2147-2022
Neige: changements actuels et futurs
Buchmann, M. (2022). Neige: changements actuels et futurs. In T. Rutishauser (Ed.), Geographica Bernensia: Vol. G97. Changement climatique et saisons (pp. 22-23). Geographisches Institut der Universität Bern.
Automated avalanche hazard indication mapping on a statewide scale
Bühler, Y., Bebi, P., Christen, M., Margreth, S., Stoffel, L., Stoffel, A., … Bartelt, P. (2022). Automated avalanche hazard indication mapping on a statewide scale. Natural Hazards and Earth System Science, 22(6), 1825-1843. https://doi.org/10.5194/nhess-22-1825-2022
GNSS signal-based snow water equivalent determination for different snowpack conditions along a steep elevation gradient
Capelli, A., Koch, F., Henkel, P., Lamm, M., Appel, F., Marty, C., & Schweizer, J. (2022). GNSS signal-based snow water equivalent determination for different snowpack conditions along a steep elevation gradient. Cryosphere, 16(2), 505-531. https://doi.org/10.5194/tc-16-505-2022
A comparison of hydrological models with different level of complexity in Alpine regions in the context of climate change
Carletti, F., Michel, A., Casale, F., Burri, A., Bocchiola, D., Bavay, M., & Lehning, M. (2022). A comparison of hydrological models with different level of complexity in Alpine regions in the context of climate change. Hydrology and Earth System Sciences, 26(13), 3447-3475. https://doi.org/10.5194/hess-26-3447-2022
Propagating information from snow observations with CrocO ensemble data assimilation system: a 10-years case study over a snow depth observation network
Cluzet, B., Lafaysse, M., Deschamps-Berger, C., Vernay, M., & Dumont, M. (2022). Propagating information from snow observations with CrocO ensemble data assimilation system: a 10-years case study over a snow depth observation network. Cryosphere, 16(4), 1281-1298. https://doi.org/10.5194/tc-16-1281-2022
Optimized market value of alpine solar photovoltaic installations
Dujardin, J., Schillinger, M., Kahl, A., Savelsberg, J., Schlecht, I., & Lordan-Perret, R. (2022). Optimized market value of alpine solar photovoltaic installations. Renewable Energy, 186, 878-888. https://doi.org/10.1016/j.renene.2022.01.016
Wind-Topo: downscaling near-surface wind fields to high-resolution topography in highly complex terrain with deep learning
Dujardin, J., & Lehning, M. (2022). Wind-Topo: downscaling near-surface wind fields to high-resolution topography in highly complex terrain with deep learning. Quarterly Journal of the Royal Meteorological Society, 148(744), 1368-1388. https://doi.org/10.1002/qj.4265
Climate scenarios for Switzerland CH2018 - approach and implications
Fischer, A. M., Strassmann, K. M., Croci-Maspoli, M., Hama, A. M., Knutti, R., Kotlarski, S., … Zubler, E. M. (2022). Climate scenarios for Switzerland CH2018 - approach and implications. Climate Services, 26, 100288 (16 pp.). https://doi.org/10.1016/j.cliser.2022.100288
Convection of water vapour in snowpacks
Jafari, M., Sharma, V., & Lehning, M. (2022). Convection of water vapour in snowpacks. Journal of Fluid Mechanics, 934, A38 (50 pp.). https://doi.org/10.1017/jfm.2021.1146
Exploring snow distribution dynamics in steep forested slopes with UAV-borne LiDAR
Koutantou, K., Mazzotti, G., Brunner, P., Webster, C., & Jonas, T. (2022). Exploring snow distribution dynamics in steep forested slopes with UAV-borne LiDAR. Cold Regions Science and Technology, 200, 103587 (15 pp.). https://doi.org/10.1016/j.coldregions.2022.103587
A downscaling intercomparison study: the representation of slope- and ridge-scale processes in models of different complexity
Kruyt, B., Mott, R., Fiddes, J., Gerber, F., Sharma, V., & Reynolds, D. (2022). A downscaling intercomparison study: the representation of slope- and ridge-scale processes in models of different complexity. Frontiers in Earth Science, 10, 789332 (22 pp.). https://doi.org/10.3389/feart.2022.789332
Sentinel-1 snow depth retrieval at sub-kilometer resolution over the European Alps
Lievens, H., Brangers, I., Marshall, H. P., Jonas, T., Olefs, M., & De Lannoy, G. (2022). Sentinel-1 snow depth retrieval at sub-kilometer resolution over the European Alps. Cryosphere, 16(1), 159-177. https://doi.org/10.5194/tc-16-159-2022
Arctic sea ice albedo: spectral composition, spatial heterogeneity, and temporal evolution observed during the MOSAiC drift
Light, B., Smith, M. M., Perovich, D. K., Webster, M. A., Holland, M. M., Linhardt, F., … Bailey, D. A. (2022). Arctic sea ice albedo: spectral composition, spatial heterogeneity, and temporal evolution observed during the MOSAiC drift. Elementa: Science of the Anthropocene, 10(1), 10 (24 pp.). https://doi.org/10.1525/elementa.2021.000103
Sub-kilometre scale distribution of snow depth on Arctic sea ice from Soviet drifting stations
Mallett, R. D. C., Stroeve, J. C., Tsamados, M., Willatt, R., Newman, T., Nandan, V., … Perovich, D. (2022). Sub-kilometre scale distribution of snow depth on Arctic sea ice from Soviet drifting stations. Journal of Glaciology. https://doi.org/10.1017/jog.2022.18
Modeling snow saltation: the effect of grain size and interparticle Cohesion
Melo, D. B., Sharma, V., Comola, F., Sigmund, A., & Lehning, M. (2022). Modeling snow saltation: the effect of grain size and interparticle Cohesion. Journal of Geophysical Research D: Atmospheres, 127(1), e2021JD035260 (26 pp.). https://doi.org/10.1029/2021JD035260
Future water temperature of rivers in Switzerland under climate change investigated with physics-based models
Michel, A., Schaefli, B., Wever, N., Zekollari, H., Lehning, M., & Huwald, H. (2022). Future water temperature of rivers in Switzerland under climate change investigated with physics-based models. Hydrology and Earth System Sciences, 26(4), 1063-1087. https://doi.org/10.5194/hess-26-1063-2022
 

Pages