Active Filters

  • (-) … = wsl-units:11
  • (-) Journal = Geoscientific Model Development
Search Results 1 - 17 of 17
  • RSS Feed
Select Page
An empirical model to calculate snow depth from daily snow water equivalent: SWE2HS 1.0
Aschauer, J., Michel, A., Jonas, T., & Marty, C. (2023). An empirical model to calculate snow depth from daily snow water equivalent: SWE2HS 1.0. Geoscientific Model Development, 16(14), 4063-4081. https://doi.org/10.5194/gmd-16-4063-2023
A finite-element framework to explore the numerical solution of the coupled problem of heat conduction, water vapor diffusion, and settlement in dry snow (IvoriFEM v0.1.0)
Brondex, J., Fourteau, K., Dumont, M., Hagenmuller, P., Calonne, N., Tuzet, F., & Löwe, H. (2023). A finite-element framework to explore the numerical solution of the coupled problem of heat conduction, water vapor diffusion, and settlement in dry snow (IvoriFEM v0.1.0). Geoscientific Model Development, 16(23), 7075-7106. https://doi.org/10.5194/gmd-16-7075-2023
Automatic snow type classification of snow micropenetrometer profiles with machine learning algorithms
Kaltenborn, J., Macfarlane, A. R., Clay, V., & Schneebeli, M. (2023). Automatic snow type classification of snow micropenetrometer profiles with machine learning algorithms. Geoscientific Model Development, 16(15), 4521-4550. https://doi.org/10.5194/gmd-16-4521-2023
A wind-driven snow redistribution module for Alpine3D v3.3.0: adaptations designed for downscaling ice sheet surface mass balance
Keenan, E., Wever, N., Lenaerts, J. T. M., & Medley, B. (2023). A wind-driven snow redistribution module for Alpine3D v3.3.0: adaptations designed for downscaling ice sheet surface mass balance. Geoscientific Model Development, 16(11), 3203-3219. https://doi.org/10.5194/gmd-16-3203-2023
The High-resolution Intermediate Complexity Atmospheric Research (HICAR v1.1) model enables fast dynamic downscaling to the hectometer scale
Reynolds, D., Gutmann, E., Kruyt, B., Haugeneder, M., Jonas, T., Gerber, F., … Mott, R. (2023). The High-resolution Intermediate Complexity Atmospheric Research (HICAR v1.1) model enables fast dynamic downscaling to the hectometer scale. Geoscientific Model Development, 16(17), 5049-5068. https://doi.org/10.5194/gmd-16-5049-2023
Introducing CRYOWRF v1.0: multiscale atmospheric flow simulations with advanced snow cover modelling
Sharma, V., Gerber, F., & Lehning, M. (2023). Introducing CRYOWRF v1.0: multiscale atmospheric flow simulations with advanced snow cover modelling. Geoscientific Model Development, 16(2), 719-749. https://doi.org/10.5194/gmd-16-719-2023
The Multiple Snow Data Assimilation System (MuSA v1.0)
Alonso-González, E., Aalstad, K., Baba, M. W., Revuelto, J., López-Moreno, J. I., Fiddes, J., … Gascoin, S. (2022). The Multiple Snow Data Assimilation System (MuSA v1.0). Geoscientific Model Development, 15(24), 9127-9155. https://doi.org/10.5194/gmd-15-9127-2022
Inishell 2.0: semantically driven automatic GUI generation for scientific models
Bavay, M., Reisecker, M., Egger, T., & Korhammer, D. (2022). Inishell 2.0: semantically driven automatic GUI generation for scientific models. Geoscientific Model Development, 15(2), 365-378. https://doi.org/10.5194/gmd-15-365-2022
TopoCLIM: rapid topography-based downscaling of regional climate model output in complex terrain v1.1
Fiddes, J., Aalstad, K., & Lehning, M. (2022). TopoCLIM: rapid topography-based downscaling of regional climate model output in complex terrain v1.1. Geoscientific Model Development, 15(4), 1753-1768. https://doi.org/10.5194/gmd-15-1753-2022
Modeling the small-scale deposition of snow onto structured Arctic sea ice during a MOSAiC storm using snowBedFoam 1.0.
Hames, O., Jafari, M., Wagner, D. N., Raphael, I., Clemens-Sewall, D., Polashenski, C., … Lehning, M. (2022). Modeling the small-scale deposition of snow onto structured Arctic sea ice during a MOSAiC storm using snowBedFoam 1.0. Geoscientific Model Development, 15(16), 6429-6449. https://doi.org/10.5194/gmd-15-6429-2022
Version 1 of a sea ice module for the physics-based, detailed, multi-layer SNOWPACK model
Wever, N., Rossmann, L., Maaß, N., Leonard, K. C., Kaleschke, L., Nicolaus, M., & Lehning, M. (2020). Version 1 of a sea ice module for the physics-based, detailed, multi-layer SNOWPACK model. Geoscientific Model Development, 13(1), 99-119. https://doi.org/10.5194/gmd-13-99-2020
ESM-SnowMIP: assessing snow models and quantifying snow-related climate feedbacks
Krinner, G., Derksen, C., Essery, R., Flanner, M., Hagemann, S., Clark, M., … Zhu, D. (2018). ESM-SnowMIP: assessing snow models and quantifying snow-related climate feedbacks. Geoscientific Model Development, 11(12), 5027-5049. https://doi.org/10.5194/gmd-11-5027-2018
SMRT: an active-passive microwave radiative transfer model for snow with multiple microstructure and scattering formulations (v1.0)
Picard, G., Sandells, M., & Löwe, H. (2018). SMRT: an active-passive microwave radiative transfer model for snow with multiple microstructure and scattering formulations (v1.0). Geoscientific Model Development, 11(7), 2763-2788. https://doi.org/10.5194/gmd-11-2763-2018
StreamFlow 1.0: an extension to the spatially distributed snow model Alpine3D for hydrological modelling and deterministic stream temperature prediction
Gallice, A., Bavay, M., Brauchli, T., Comola, F., Lehning, M., & Huwald, H. (2016). StreamFlow 1.0: an extension to the spatially distributed snow model Alpine3D for hydrological modelling and deterministic stream temperature prediction. Geoscientific Model Development, 9(12), 4491-4519. https://doi.org/10.5194/gmd-9-4491-2016
A two-layer canopy model with thermal inertia for an improved snowpack energy balance below needleleaf forest (model SNOWPACK, version 3.2.1, revision 741)
Gouttevin, I., Lehning, M., Jonas, T., Gustafsson, D., & Mölder, M. (2015). A two-layer canopy model with thermal inertia for an improved snowpack energy balance below needleleaf forest (model SNOWPACK, version 3.2.1, revision 741). Geoscientific Model Development, 8(8), 2379-2398. https://doi.org/10.5194/gmd-8-2379-2015
MEMLS3&a: Microwave Emission Model of Layered Snowpacks adapted to include backscattering
Proksch, M., Mätzler, C., Wiesmann, A., Lemmetyinen, J., Schwank, M., Löwe, H., & Schneebeli, M. (2015). MEMLS3&a: Microwave Emission Model of Layered Snowpacks adapted to include backscattering. Geoscientific Model Development, 8(8), 2611-2626. https://doi.org/10.5194/gmd-8-2611-2015
MeteoIO 2.4.2: a preprocessing library for meteorological data
Bavay, M., & Egger, T. (2014). MeteoIO 2.4.2: a preprocessing library for meteorological data. Geoscientific Model Development, 7(6), 3135-3151. https://doi.org/10.5194/gmd-7-3135-2014