Active Filters

  • (-) WSL Authors = Buser, Othmar
Search Results 1 - 20 of 32
Select Page
Dynamic magnification factors for snow avalanche impact (with pile-up) on walls and pylons
Bartelt, P., Buser, O., Christen, M., & Caviezel, A. (2019). Dynamic magnification factors for snow avalanche impact (with pile-up) on walls and pylons. In M. Papadrakakis & M. Fragiadakis (Eds.), Vol. 3. COMPDYN 2019. 7th international conference on computational methods in structural dynamics and earthquake engineering. Proceedings (pp. 4376-4385). Institute of Structural Analysis and Antiseismic Research, School of Civil Engineering, National Technical University of Athens (NTUA).
Avalanche dynamics by Newton. Reply to comments on avalanche flow models based on the concept of random kinetic energy
Bartelt, P., & Buser, O. (2018). Avalanche dynamics by Newton. Reply to comments on avalanche flow models based on the concept of random kinetic energy. Journal of Glaciology, 64(243), 165-170. https://doi.org/10.1017/jog.2018.1
Thermomechanical modelling of rock avalanches with debris, ice and snow entrainment
Bartelt, P., Christen, M., Bühler, Y., & Buser, O. (2018). Thermomechanical modelling of rock avalanches with debris, ice and snow entrainment. In A. S. Cardoso, J. L. Borges, P. A. Costa, A. T. Gomes, J. C. Marques, & C. S. Vieira (Eds.), Numerical methods in geotechnical engineering IX (pp. 1047-1054). Taylor & Francis.
Configurational energy and the formation of mixed flowing/powder snow and ice avalanches
Bartelt, P., Buser, O., Vera Valero, C., & Bühler, Y. (2016). Configurational energy and the formation of mixed flowing/powder snow and ice avalanches. Annals of Glaciology, 57(71), 179-188. https://doi.org/10.3189/2016AoG71A464
Dispersive pressure, boundary jerk and configurational changes in debris flows
Bartelt, P., McArdell, B., Graf, C., Christen, M., & Buser, O. (2016). Dispersive pressure, boundary jerk and configurational changes in debris flows. International Journal of Erosion Control Engineering, 9(1), 1-6. https://doi.org/10.13101/ijece.9.1
Reply to "Discussion of "The relation between dilatancy, effective stress and dispersive pressure in granular avalanches" by P. Bartelt and O. Buser (DOI: 10.1007/s11440-016-0463-7)" by Richard Iverson and David L. George (DOI: 10.1007/s11440-016-0502-4)
Bartelt, P., & Buser, O. (2016). Reply to "Discussion of "The relation between dilatancy, effective stress and dispersive pressure in granular avalanches" by P. Bartelt and O. Buser (DOI: 10.1007/s11440-016-0463-7)" by Richard Iverson and David L. George (DOI: 10.1007/s11440-016-0502-4). Acta Geotechnica, 11(6), 1469-1473. https://doi.org/10.1007/s11440-016-0503-3
The relation between dilatancy, effective stress and dispersive pressure in granular avalanches
Bartelt, P., & Buser, O. (2016). The relation between dilatancy, effective stress and dispersive pressure in granular avalanches. Acta Geotechnica, 11(3), 549-557. https://doi.org/10.1007/s11440-016-0463-7
Modelling cohesion in snow avalanche flow
Bartelt, P., Vera Valero, C., Feistl, T., Christen, M., Bühler, Y., & Buser, O. (2015). Modelling cohesion in snow avalanche flow. Journal of Glaciology, 61(229), 837-850. https://doi.org/10.3189/2015JoG14J126
An energy-based method to calculate streamwise density variations in snow avalanches
Buser, O., & Bartelt, P. (2015). An energy-based method to calculate streamwise density variations in snow avalanches. Journal of Glaciology, 61(227), 563-575. https://doi.org/10.3189/2015JoG14J054
Numerical simulation of snow avalanches: modelling dilatative processes with cohesion in rapid granular shear flows
Bartelt, P., Buser, O., Bühler, Y., Dreier, L., & Christen, M. (2014). Numerical simulation of snow avalanches: modelling dilatative processes with cohesion in rapid granular shear flows. In M. A. Hicks, R. B. J. B. Brinkgreve, & A. Rohe (Eds.), Numerical Methods in Geotechnical Engineering - Proceedings (pp. 327-332). CRC Press.
Plume formation in powder snow avalanches
Bartelt, P., Bühler, Y., Buser, O., & Ginzler, C. (2013). Plume formation in powder snow avalanches. In F. Naaim-Bouvet, Y. Durand, & R. Lambert (Eds.), ISSW proceedings. International snow science workshop proceedings 2013 (pp. 576-582).
Formation of levees and en-echelon shear planes during snow avalanche run-out
Bartelt, P., Glover, J., Feistl, T., Bühler, Y., & Buser, O. (2012). Formation of levees and en-echelon shear planes during snow avalanche run-out. Journal of Glaciology, 58(211), 980-992. https://doi.org/10.3189/2012JoG11J011
Modeling mass-dependent flow regime transitions to predict the stopping and depositional behavior of snow avalanches
Bartelt, P., Bühler, Y., Buser, O., Christen, M., & Meier, L. (2012). Modeling mass-dependent flow regime transitions to predict the stopping and depositional behavior of snow avalanches. Journal of Geophysical Research F: Earth Surface, 117, F01015 (28 pp.). https://doi.org/10.1029/2010JF001957
Overcoming the stauchwall: Viscoelastic stress redistribution and the start of full-depth gliding snow avalanches
Bartelt, P., Feistl, T., Bühler, Y., & Buser, O. (2012). Overcoming the stauchwall: Viscoelastic stress redistribution and the start of full-depth gliding snow avalanches. Geophysical Research Letters, 39, L16501 (6 pp.). https://doi.org/10.1029/2012GL052479
Powder cloud eruptions – Where is the air reservoir and blow-out motor in the Rankine half-body? Comment on "Role of pore pressure gradients in sustaining frontal particle entrainment in eruption currents: the case of powder snow avalanches" by M. Y. Loug
Bartelt, P., & Buser, O. (2012). Powder cloud eruptions – Where is the air reservoir and blow-out motor in the Rankine half-body? Comment on "Role of pore pressure gradients in sustaining frontal particle entrainment in eruption currents: the case of powder snow avalanches" by M. Y. Louge et al. Journal of Geophysical Research F: Earth Surface, 117, F02015 (3 pp.). https://doi.org/10.1029/2012JF002333
Thermal temperature in avalanche flow
Vera Valero, C., Feistl, T., Steinkogler, W., Buser, O., & Bartelt, P. (2012). Thermal temperature in avalanche flow. In ISSW proceedings. International snow science workshop proceedings 2012 (pp. 32-37).
Dispersive pressure and velocity fluctuations in avalanches – reply to comment by K. Kelfoun and T. Davies on "a random kinetic energy model for rock avalanches: eight case studies"
Bartelt, P., & Buser, O. (2011). Dispersive pressure and velocity fluctuations in avalanches – reply to comment by K. Kelfoun and T. Davies on "a random kinetic energy model for rock avalanches: eight case studies". Journal of Geophysical Research F: Earth Surface, 116, F01015 (3 pp.). https://doi.org/10.1029/2010JF001956
Snow avalanche flow-regime transitions induced by mass and random kinetic energy fluxes
Bartelt, P., Meier, L., & Buser, O. (2011). Snow avalanche flow-regime transitions induced by mass and random kinetic energy fluxes. Annals of Glaciology, 52(58), 159-164. https://doi.org/10.3189/172756411797252158
Dispersive pressure and density variations in snow avalanches
Buser, O., & Bartelt, P. (2011). Dispersive pressure and density variations in snow avalanches. Journal of Glaciology, 57(205), 857-860. https://doi.org/10.3189/002214311798043870
Frictional relaxation in avalanches
Bartelt, P., & Buser, O. (2010). Frictional relaxation in avalanches. Annals of Glaciology, 51(54), 98-104. https://doi.org/10.3189/172756410791386607