Active Filters

  • (-) WSL Authors = Jonas, Tobias
Search Results 1 - 20 of 100

Pages

  • CSV Spreadsheet
  • Excel Spreadsheet
  • RSS Feed
Select Page
HPEval: a canopy shortwave radiation transmission model using high-resolution hemispherical images
Jonas, T., Webster, C., Mazzotti, G., & Malle, J. (2020). HPEval: a canopy shortwave radiation transmission model using high-resolution hemispherical images. Agricultural and Forest Meteorology, 284, 107903 (9 pp.). https://doi.org/10.1016/j.agrformet.2020.107903
Toward snow cover estimation in mountainous areas using modern data assimilation methods: a review
Largeron, C., Dumont, M., Morin, S., Boone, A., Lafaysse, M., Metref, S., … Margulis, S. A. (2020). Toward snow cover estimation in mountainous areas using modern data assimilation methods: a review. Frontiers in Earth Science, 8, 325 (21 pp.). https://doi.org/10.3389/feart.2020.00325
Process-level evaluation of a hyper-resolution forest snow model using distributed multi-sensor observations
Mazzotti, G., Essery, R., Webster, C., Malle, J., & Jonas, T. (2020). Process-level evaluation of a hyper-resolution forest snow model using distributed multi-sensor observations. Water Resources Research, 56(9), e2020WR027572 (25 pp.). https://doi.org/10.1029/2020WR027572
Resolving small‐scale forest snow patterns using an energy‐balance snow model with a 1‐layer canopy
Mazzotti, G., Essery, R., Moeser, C. D., & Jonas, T. (2020). Resolving small‐scale forest snow patterns using an energy‐balance snow model with a 1‐layer canopy. Water Resources Research, 56(1), e2019WR026129 (22 pp.). https://doi.org/10.1029/2019WR026129
Enhancing airborne LiDAR data for improved forest structure representation in shortwave transmission models
Webster, C., Mazzotti, G., Essery, R., & Jonas, T. (2020). Enhancing airborne LiDAR data for improved forest structure representation in shortwave transmission models. Remote Sensing of Environment, 249, 112017 (15 pp.). https://doi.org/10.1016/j.rse.2020.112017
Land surface phenology and greenness in Alpine grasslands driven by seasonal snow and meteorological factors
Xie, J., Jonas, T., Rixen, C., de Jong, R., Garonna, I., Notarnicola, C., … Kneubühler, M. (2020). Land surface phenology and greenness in Alpine grasslands driven by seasonal snow and meteorological factors. Science of the Total Environment, 725, 138380 (11 pp.). https://doi.org/10.1016/j.scitotenv.2020.138380
Comparing aerial lidar observations with terrestrial lidar and snow‐probe transects from NASA's 2017 SnowEx campaign
Currier, W. R., Pflug, J., Mazzotti, G., Jonas, T., Deems, J. S., Bormann, K. J., … Lundquist, J. D. (2019). Comparing aerial lidar observations with terrestrial lidar and snow‐probe transects from NASA's 2017 SnowEx campaign. Water Resources Research, 55(7), 6285-6294. https://doi.org/10.1029/2018WR024533
Implications of observation-enhanced energy-balance snowmelt simulations for runoff modeling of Alpine catchments
Griessinger, N., Schirmer, M., Helbig, N., Winstral, A., Michel, A., & Jonas, T. (2019). Implications of observation-enhanced energy-balance snowmelt simulations for runoff modeling of Alpine catchments. Advances in Water Resources, 133, 103410 (12 pp.). https://doi.org/10.1016/j.advwatres.2019.103410
Snow depth variability in the Northern Hemisphere mountains observed from space
Lievens, H., Demuzere, M., Marshall, H. P., Reichle, R. H., Brucker, L., Brangers, I., … De Lannoy, G. J. M. (2019). Snow depth variability in the Northern Hemisphere mountains observed from space. Nature Communications, 10, 4629 (12 pp.). https://doi.org/10.1038/s41467-019-12566-y
Projections of Alpine snow-cover in a high-resolution climate simulation
Lüthi, S., Ban, N., Kotlarski, S., Steger, C. R., Jonas, T., & Schär, C. (2019). Projections of Alpine snow-cover in a high-resolution climate simulation. Atmosphere, 10(8), 463 (18 pp.). https://doi.org/10.3390/atmos10080463
Shading by trees and fractional snow cover control the subcanopy radiation budget
Malle, J., Rutter, N., Mazzotti, G., & Jonas, T. (2019). Shading by trees and fractional snow cover control the subcanopy radiation budget. Journal of Geophysical Research D: Atmospheres, 3195-3207. https://doi.org/10.1029/2018JD029908
Revisiting snow cover variability and canopy structure within forest stands: insights from airborne lidar data
Mazzotti, G., Currier, W. R., Deems, J. S., Pflug, J. M., Lundquist, J. D., & Jonas, T. (2019). Revisiting snow cover variability and canopy structure within forest stands: insights from airborne lidar data. Water Resources Research, 55(7), 6198-6216. https://doi.org/10.1029/2019WR024898
Spatially continuous characterization of forest canopy structure and sub-canopy irradiance derived from handheld radiometer surveys
Mazzotti, G., Malle, J., Barr, S., & Jonas, T. (2019). Spatially continuous characterization of forest canopy structure and sub-canopy irradiance derived from handheld radiometer surveys. Journal of Hydrometeorology, 1417-1433. https://doi.org/10.1175/JHM-D-18-0158.1
The bias detecting ensemble: a new and efficient technique for dynamically incorporating observations into physics‐based, multi‐layer, snow models
Winstral, A., Magnusson, J., Schirmer, M., & Jonas, T. (2019). The bias detecting ensemble: a new and efficient technique for dynamically incorporating observations into physics‐based, multi‐layer, snow models. Water Resources Research, 55, 613-631. https://doi.org/10.1029/2018WR024521
Estimating below‐canopy light regimes using airborne laser scanning: an application to plant community analysis
Zellweger, F., Baltensweiler, A., Schleppi, P., Huber, M., Küchler, M., Ginzler, C., & Jonas, T. (2019). Estimating below‐canopy light regimes using airborne laser scanning: an application to plant community analysis. Ecology and Evolution, 9(16), 9149-9159. https://doi.org/10.1002/ece3.5462
Winter accumulation measurements on alpine glaciers using ground penetrating radar
Bauder, A., Mazzotti, G., Berger, C., Langhammer, L., Griessinger, N., & Jonas, T. (2018). Winter accumulation measurements on alpine glaciers using ground penetrating radar. In 2018 17th international conference on ground penetrating radar (GPR 2018) (p. (5 pp.). https://doi.org/10.1109/ICGPR.2018.8441559
Measuring snow ablation rates in alpine terrain with a mobile multioffset ground-penetrating radar system
Griessinger, N., Mohr, F., & Jonas, T. (2018). Measuring snow ablation rates in alpine terrain with a mobile multioffset ground-penetrating radar system. Hydrological Processes, 32(21), 3272-3282. https://doi.org/10.1002/hyp.13259
Where is the snow: validating a fractional-snow covered area parameterization for snow melt forecasting with satellite measurements
Helbig, N., Ehrler, M., Schirmer, M., & Jonas, T. (2018). Where is the snow: validating a fractional-snow covered area parameterization for snow melt forecasting with satellite measurements. In International snow science workshop proceedings 2018 (pp. 357-360).
Simulation of longwave enhancement in boreal and montane forests
Todt, M., Rutter, N., Fletcher, C. G., Wake, L. M., Bartlett, P. A., Jonas, T., … Webster, C. (2018). Simulation of longwave enhancement in boreal and montane forests. Journal of Geophysical Research D: Atmospheres, 123, 13731-13747. https://doi.org/10.1029/2018JD028719
Influence of canopy shading and snow coverage on effective albedo in a snow-dominated evergreen needleleaf forest
Webster, C., & Jonas, T. (2018). Influence of canopy shading and snow coverage on effective albedo in a snow-dominated evergreen needleleaf forest. Remote Sensing of Environment, 214, 48-58. https://doi.org/10.1016/j.rse.2018.05.023
 

Pages