| CRYOWRF - model evaluation and the effect of blowing snow on the Antarctic surface mass balance
Gerber, F., Sharma, V., & Lehning, M. (2023). CRYOWRF - model evaluation and the effect of blowing snow on the Antarctic surface mass balance. Journal of Geophysical Research D: Atmospheres, 128(12), e2022JD037744 (19 pp.). https://doi.org/10.1029/2022JD037744 |
| A novel method to quantify near-surface boundary-layer dynamics at ultra-high spatio-temporal resolution
Haugeneder, M., Lehning, M., Reynolds, D., Jonas, T., & Mott, R. (2023). A novel method to quantify near-surface boundary-layer dynamics at ultra-high spatio-temporal resolution. Boundary-Layer Meteorology, 186, 177-197. https://doi.org/10.1007/s10546-022-00752-3 |
| Inter-comparison of spatial models for high shares of renewable electricity in Switzerland
Heinisch, V., Dujardin, J., Gabrielli, P., Jain, P., Lehning, M., Sansavini, G., … Trutnevyte, E. (2023). Inter-comparison of spatial models for high shares of renewable electricity in Switzerland. Applied Energy, 350, 121700 (12 pp.). https://doi.org/10.1016/j.apenergy.2023.121700 |
| Convection of snow: when and why does it happen?
Jafari, M., & Lehning, M. (2023). Convection of snow: when and why does it happen? Frontiers in Earth Science, 11, 1167760 (11 pp.). https://doi.org/10.3389/feart.2023.1167760 |
| Combining weather station data and short-term LiDAR deployment to estimate wind energy potential with Machine Learning: a case study from the Swiss Alps
Kristianti, F., Dujardin, J., Gerber, F., Huwald, H., Hoch, S. W., & Lehning, M. (2023). Combining weather station data and short-term LiDAR deployment to estimate wind energy potential with Machine Learning: a case study from the Swiss Alps. Boundary-Layer Meteorology, 188, 185-208. https://doi.org/10.1007/s10546-023-00808-y |
| A database of snow on sea ice in the central Arctic collected during the MOSAiC expedition
Macfarlane, A. R., Schneebeli, M., Dadic, R., Tavri, A., Immerz, A., Polashenski, C., … Fons, S. (2023). A database of snow on sea ice in the central Arctic collected during the MOSAiC expedition. Scientific Data, 10(1), 398 (17 pp.). https://doi.org/10.1038/s41597-023-02273-1 |
| Determining return levels of extreme daily precipitation, reservoir inflow, and dry spells
Milojevic, T., Blanchet, J., & Lehning, M. (2023). Determining return levels of extreme daily precipitation, reservoir inflow, and dry spells. Frontiers in Water, 5, 1141786 (15 pp.). https://doi.org/10.3389/frwa.2023.1141786 |
| The High-resolution Intermediate Complexity Atmospheric Research (HICAR v1.1) model enables fast dynamic downscaling to the hectometer scale
Reynolds, D., Gutmann, E., Kruyt, B., Haugeneder, M., Jonas, T., Gerber, F., … Mott, R. (2023). The High-resolution Intermediate Complexity Atmospheric Research (HICAR v1.1) model enables fast dynamic downscaling to the hectometer scale. Geoscientific Model Development, 16(17), 5049-5068. https://doi.org/10.5194/gmd-16-5049-2023 |
| Decentralized green energy transition promotes peace
Rohner, D., Lehning, M., Steinberger, J., Tetreault, N., & Trutnevyte, E. (2023). Decentralized green energy transition promotes peace. Frontiers in Environmental Science, 11, 1118987 (4 pp.). https://doi.org/10.3389/fenvs.2023.1118987 |
| Introducing CRYOWRF v1.0: multiscale atmospheric flow simulations with advanced snow cover modelling
Sharma, V., Gerber, F., & Lehning, M. (2023). Introducing CRYOWRF v1.0: multiscale atmospheric flow simulations with advanced snow cover modelling. Geoscientific Model Development, 16(2), 719-749. https://doi.org/10.5194/gmd-16-719-2023 |
| A case study on drivers of the isotopic composition of water vapor at the coast of East Antarctica
Sigmund, A., Chaar, R., Ebner, P. P., & Lehning, M. (2023). A case study on drivers of the isotopic composition of water vapor at the coast of East Antarctica. Journal of Geophysical Research F: Earth Surface, 128(7), e2023JF007062 (17 pp.). https://doi.org/10.1029/2023JF007062 |
| Observations and simulations of new snow density in the drifting snow-dominated environment of Antarctica
Wever, N., Keenan, E., Amory, C., Lehning, M., Sigmund, A., Huwald, H., & Lenaerts, J. T. M. (2023). Observations and simulations of new snow density in the drifting snow-dominated environment of Antarctica. Journal of Glaciology, 69(276), 823-840. https://doi.org/10.1017/jog.2022.102 |
| Wind conditions for snow cornice formation in a wind tunnel
Yu, H., Li, G., Walter, B., Lehning, M., Zhang, J., & Huang, N. (2023). Wind conditions for snow cornice formation in a wind tunnel. Cryosphere, 17(2), 639-951. https://doi.org/10.5194/tc-17-639-2023 |
| Fingerprints of frontal passages and post-depositional effects in the stable water isotope signal of seasonal Alpine snow
Aemisegger, F., Trachsel, J., Sadowski, Y., Eichler, A., Lehning, M., Avak, S., & Schneebeli, M. (2022). Fingerprints of frontal passages and post-depositional effects in the stable water isotope signal of seasonal Alpine snow. Journal of Geophysical Research D: Atmospheres, 127(22), e2022JD037469 (20 pp.). https://doi.org/10.1029/2022JD037469 |
| Influence of meteorological conditions on artificial ice reservoir (Icestupa) evolution
Balasubramanian, S., Hoelzle, M., Lehning, M., Bolibar, J., Wangchuk, S., Oerlemans, J., & Keller, F. (2022). Influence of meteorological conditions on artificial ice reservoir (Icestupa) evolution. Frontiers in Earth Science, 9, 771342 (17 pp.). https://doi.org/10.3389/feart.2021.771342 |
| A comparison of hydrological models with different level of complexity in Alpine regions in the context of climate change
Carletti, F., Michel, A., Casale, F., Burri, A., Bocchiola, D., Bavay, M., & Lehning, M. (2022). A comparison of hydrological models with different level of complexity in Alpine regions in the context of climate change. Hydrology and Earth System Sciences, 26(13), 3447-3475. https://doi.org/10.5194/hess-26-3447-2022 |
| Wind-Topo: downscaling near-surface wind fields to high-resolution topography in highly complex terrain with deep learning
Dujardin, J., & Lehning, M. (2022). Wind-Topo: downscaling near-surface wind fields to high-resolution topography in highly complex terrain with deep learning. Quarterly Journal of the Royal Meteorological Society, 148(744), 1368-1388. https://doi.org/10.1002/qj.4265 |
| TopoCLIM: rapid topography-based downscaling of regional climate model output in complex terrain v1.1
Fiddes, J., Aalstad, K., & Lehning, M. (2022). TopoCLIM: rapid topography-based downscaling of regional climate model output in complex terrain v1.1. Geoscientific Model Development, 15(4), 1753-1768. https://doi.org/10.5194/gmd-15-1753-2022 |
| Modeling the small-scale deposition of snow onto structured Arctic sea ice during a MOSAiC storm using snowBedFoam 1.0.
Hames, O., Jafari, M., Wagner, D. N., Raphael, I., Clemens-Sewall, D., Polashenski, C., … Lehning, M. (2022). Modeling the small-scale deposition of snow onto structured Arctic sea ice during a MOSAiC storm using snowBedFoam 1.0. Geoscientific Model Development, 15(16), 6429-6449. https://doi.org/10.5194/gmd-15-6429-2022 |
| Convection of water vapour in snowpacks
Jafari, M., Sharma, V., & Lehning, M. (2022). Convection of water vapour in snowpacks. Journal of Fluid Mechanics, 934, A38 (50 pp.). https://doi.org/10.1017/jfm.2021.1146 |