Active Filters

  • (-) WSL Authors = Löwe, Henning
Search Results 1 - 20 of 57
Select Page
Computational micromechanics of porous brittle solids
Blatny, L., Löwe, H., Wang, S., & Gaume, J. (2021). Computational micromechanics of porous brittle solids. Computers and geotechnics, 140, 104284 (13 pp.). https://doi.org/10.1016/j.compgeo.2021.104284
Acoustic velocity measurements for detecting the crystal orientation fabrics of a temperate ice core
Hellmann, S., Grab, M., Kerch, J., Löwe, H., Bauder, A., Weikusat, I., & Maurer, H. (2021). Acoustic velocity measurements for detecting the crystal orientation fabrics of a temperate ice core. Cryosphere, 15(7), 3507-3521. https://doi.org/10.5194/tc-15-3507-2021
A casting method using contrast-enhanced diethylphthalate for micro-computed tomography of snow
Lombardo, M., Schneebeli, M., & Löwe, H. (2021). A casting method using contrast-enhanced diethylphthalate for micro-computed tomography of snow. Journal of Glaciology, 67(265), 847-861. https://doi.org/10.1017/jog.2021.35
X-ray tomography-based microstructure representation in the Snow Microwave Radiative Transfer model
Sandells, M., Löwe, H., Picard, G., Dumont, M., Essery, R., Floury, N., … Mätzler, C. (2021). X-ray tomography-based microstructure representation in the Snow Microwave Radiative Transfer model. IEEE Transactions on Geoscience and Remote Sensing. https://doi.org/10.1109/TGRS.2021.3086412
Size controls on the crossover from normal to self-inhibited sintering of ice spheres
Willibald, C., Dual, J., Schneebeli, M., & Löwe, H. (2021). Size controls on the crossover from normal to self-inhibited sintering of ice spheres. Acta Materialia, 213, 116926 (11 pp.). https://doi.org/10.1016/j.actamat.2021.116926
The RHOSSA campaign: multi-resolution monitoring of the seasonal evolution of the structure and mechanical stability of an alpine snowpack
Calonne, N., Richter, B., Löwe, H., Cetti, C., ter Schure, J., Van Herwijnen, A., … Schneebeli, M. (2020). The RHOSSA campaign: multi-resolution monitoring of the seasonal evolution of the structure and mechanical stability of an alpine snowpack. Cryosphere, 14(6), 1829-1848. https://doi.org/10.5194/tc-14-1829-2020
Modeling the evolution of the structural anisotropy of snow
Leinss, S., Löwe, H., Proksch, M., & Kontu, A. (2020). Modeling the evolution of the structural anisotropy of snow. Cryosphere, 14(1), 51-75. https://doi.org/10.5194/tc-14-51-2020
Snow mechanics near the ductile-brittle transition: compressive stick-slip and snow microquakes
Löwe, H., Zaiser, M., Mösinger, S., & Schleef, S. (2020). Snow mechanics near the ductile-brittle transition: compressive stick-slip and snow microquakes. Geophysical Research Letters, 47(4), e2019GL085491 (9 pp.). https://doi.org/10.1029/2019GL085491
On the birth of structural and crystallographic fabric signals in polar snow: a case study rrom the EastGRIP snowpack
Montagnat, M., Löwe, H., Calonne, N., Schneebeli, M., Matzl, M., & Jaggi, M. (2020). On the birth of structural and crystallographic fabric signals in polar snow: a case study rrom the EastGRIP snowpack. Frontiers in Earth Science, 8, 365 (15 pp.). https://doi.org/10.3389/feart.2020.00365
Microstructural controls of anticrack nucleation in highly porous brittle solids
Ritter, J., Löwe, H., & Gaume, J. (2020). Microstructural controls of anticrack nucleation in highly porous brittle solids. Scientific Reports, 10(1), 12383 (10 pp.). https://doi.org/10.1038/s41598-020-67926-2
Angle of repose experiments with snow: role of grain shape and cohesion
Willibald, C., Löwe, H., Theile, T., Dual, J., & Schneebeli, M. (2020). Angle of repose experiments with snow: role of grain shape and cohesion. Journal of Glaciology, 66(258), 658-666. https://doi.org/10.1017/jog.2020.36
Multi-tracer study of gas trapping in an East Antarctic ice core
Fourteau, K., Martinerie, P., Faïn, X., Schaller, C. F., Tuckwell, R. J., Löwe, H., … Lipenkov, V. Y. (2019). Multi-tracer study of gas trapping in an East Antarctic ice core. Cryosphere, 13(12), 3383-3403. https://doi.org/10.5194/tc-13-3383-2019
Comparing measurements of snow mechanical properties relevant for slab avalanche release
Reuter, B., Proksch, M., Löwe, H., van Herwijnen, A., & Schweizer, J. (2019). Comparing measurements of snow mechanical properties relevant for slab avalanche release. Journal of Glaciology, 65(249), 55-67. https://doi.org/10.1017/jog.2018.93
Comparison of elastic moduli from seismic diving-wave and ice-core microstructure analysis in Antarctic polar firn
Schlegel, R., Diez, A., Löwe, H., Mayer, C., Lambrecht, A., Freitag, J., … Eisen, O. (2019). Comparison of elastic moduli from seismic diving-wave and ice-core microstructure analysis in Antarctic polar firn. Annals of Glaciology, 60(79), 220-230. https://doi.org/10.1017/aog.2019.10
ESA SnowLab project: 4 years of wide band scatterometer measurements of seasonal snow
Wiesmann, A., Caduff, R., Werner, C., Frey, O., Schneebeli, M., Löwe, H., … Fehr, T. (2019). ESA SnowLab project: 4 years of wide band scatterometer measurements of seasonal snow. In 2019 IEEE international geoscience & remote sensingsymposium. Proceedings (pp. 5745-5748). https://doi.org/10.1109/IGARSS.2019.8898961
Ice spheres as model snow: tumbling, sintering, and mechanical tests
Willibald, C., Scheuber, S., Löwe, H., Dual, J., & Schneebeli, M. (2019). Ice spheres as model snow: tumbling, sintering, and mechanical tests. Frontiers in Earth Science, 7, 229 (13 pp.). https://doi.org/10.3389/feart.2019.00229
Observation and modelling of snow at a polygonal tundra permafrost site: spatial variability and thermal implications
Gouttevin, I., Langer, M., Löwe, H., Boike, J., Proksch, M., & Schneebeli, M. (2018). Observation and modelling of snow at a polygonal tundra permafrost site: spatial variability and thermal implications. Cryosphere, 12(11), 3693-3717. https://doi.org/10.5194/tc-12-3693-2018
Upscaling ice crystal growth dynamics in snow: rigorous modeling and comparison to 4D X-ray tomography data
Krol, Q., & Löwe, H. (2018). Upscaling ice crystal growth dynamics in snow: rigorous modeling and comparison to 4D X-ray tomography data. Acta Materialia, 151, 478-487. https://doi.org/10.1016/j.actamat.2018.03.010
A new active/passive microwave radiative transfer model for snow (SMRT) to foster inter-comparisons of model components
Picard, G., Sandells, M., & Löwe, H. (2018). A new active/passive microwave radiative transfer model for snow (SMRT) to foster inter-comparisons of model components. In Observing, understandig and forecasting the dynamics of our planet (pp. 6276-6279). https://doi.org/10.1109/IGARSS.2018.8517407
SMRT: an active-passive microwave radiative transfer model for snow with multiple microstructure and scattering formulations (v1.0)
Picard, G., Sandells, M., & Löwe, H. (2018). SMRT: an active-passive microwave radiative transfer model for snow with multiple microstructure and scattering formulations (v1.0). Geoscientific Model Development, 11(7), 2763-2788. https://doi.org/10.5194/gmd-11-2763-2018