Active Filters

  • (-) WSL Authors = Schneebeli, Martin
Search Results 1 - 20 of 148

Pages

  • CSV Spreadsheet
  • Excel Spreadsheet
  • RSS Feed
Select Page
3D-characterization of three-phase systems using X-ray tomography: tracking the microstructural evolution in ice cream
Pinzer, B. R., Medebach, A., Limbach, H. J., Dubois, C., Stampanoni, M., & Schneebeli, M. (2012). 3D-characterization of three-phase systems using X-ray tomography: tracking the microstructural evolution in ice cream. Soft Matter, 8(17), 4584-4594. https://doi.org/10.1039/c2sm00034b
A Probalistic Model to Evaluate the Optimal Density of Stations Measuring Snowfall
Schneebeli, M., & Laternser, M. (2004). A Probalistic Model to Evaluate the Optimal Density of Stations Measuring Snowfall. Journal of Applied Meteorology, 43(5), 711-719. https://doi.org/10.1175/2101.1
A constant-speed penetrometer for high-resolution snow stratigraphy
Schneebeli, M., & Johnson, J. B. (1998). A constant-speed penetrometer for high-resolution snow stratigraphy. Annals of Glaciology, 26, 107-111. https://doi.org/10.3189/1998AoG26-1-107-111
A general treatment of snow microstructure exemplified by an improved relation for the thermal conductivity
Löwe, H., Riche, F., & Schneebeli, M. (2013). A general treatment of snow microstructure exemplified by an improved relation for the thermal conductivity. Cryosphere, 7(5), 1473-1480. https://doi.org/10.5194/tc-7-1473-2013
A microstructural approach to model heat transfer in snow
Kaempfer, T. U., Schneebeli, M., & Sokratov, S. A. (2005). A microstructural approach to model heat transfer in snow. Geophysical Research Letters, 32(21), L21503 (5 pp.). https://doi.org/10.1029/2005GL023873
A model for kinetic grain growth
Baunach, T., Fierz, C., Satyawali, P. K., & Schneebeli, M. (2001). A model for kinetic grain growth. Annals of Glaciology, 32, 1-6. https://doi.org/10.3189/172756401781819427
A new in situ sensor for large-scale snow-cover monitoring
Stähli, M., Stacheder, M., Gustafsson, D., Schlaeger, S., Schneebeli, M., & Brandelik, A. (2004). A new in situ sensor for large-scale snow-cover monitoring. Annals of Glaciology, 38, 273-278. https://doi.org/10.3189/172756404781814933
A unique time series of daily and weekly snowpack measurements at Weissfluh-Joch, Davos, Switzerland
Calonne, N., Cetti, C., Fierz, C., Van Herwijnen, A., Jaggi, M., Löwe, H., … Schneebeli, M. (2016). A unique time series of daily and weekly snowpack measurements at Weissfluh-Joch, Davos, Switzerland. In ISSW proceedings. International snow science workshop proceedings 2016 (pp. 684-689). Retrieved from http://arc.lib.montana.edu/snow-science/item/2347
Active microwave scattering signature of snowpack – continuous multiyear SnowScat observation experiments
Lin, C. C., Rommen, B., Floury, N., Schüttemeyer, D., Davidson, M. W. J., Kern, M., … Nagler, T. (2016). Active microwave scattering signature of snowpack – continuous multiyear SnowScat observation experiments. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9(8), 3849-3869. https://doi.org/10.1109/JSTARS.2016.2560168
Algorithm to decompose three-dimensional complex structures at the necks: tested on snow structures
Theile, T., & Schneebeli, M. (2011). Algorithm to decompose three-dimensional complex structures at the necks: tested on snow structures. IET Image Processing, 5(2), 132-140. https://doi.org/10.1049/iet-ipr.2009.0410
An instrumented sample holder for time-lapse microtomography measurements of snow under advective airflow
Ebner, P. P., Grimm, S. A., Schneebeli, M., & Steinfeld, A. (2014). An instrumented sample holder for time-lapse microtomography measurements of snow under advective airflow. Geoscientific Instrumentation, Methods and Data Systems, 3(2), 179-185. https://doi.org/10.5194/gi-3-179-2014
Arctic snow microstructure experiment for the development of snow emission modelling
Maslanka, W., Leppänen, L., Kontu, A., Sandells, M., Lemmetyinen, J., Schneebeli, M., … Gurney, R. (2016). Arctic snow microstructure experiment for the development of snow emission modelling. Geoscientific Instrumentation, Methods and Data Systems, 5(1), 85-94. https://doi.org/10.5194/gi-5-85-2016
Black carbon and inorganic aerosols in Arctic snowpack
Mori, T., Goto‐Azuma, K., Kondo, Y., Ogawa‐Tsukagawa, Y., Miura, K., Hirabayashi, M., … Nagatsuka, N. (2019). Black carbon and inorganic aerosols in Arctic snowpack. Journal of Geophysical Research D: Atmospheres. https://doi.org/10.1029/2019JD030623
Breeding snow: an instrumented sample holder for simultaneous tomographic and thermal studies
Pinzer, B., & Schneebeli, M. (2009). Breeding snow: an instrumented sample holder for simultaneous tomographic and thermal studies. Measurement Science and Technology, 20(9), 095705 (9 pp.). https://doi.org/10.1088/0957-0233/20/9/095705
Carbon storage versus albedo change: radiative forcing of forest expansion in temperate mountainous regions of Switzerland
Schwaab, J., Bavay, M., Davin, E., Hagedorn, F., Hüsler, F., Lehning, M., … Bebi, P. (2015). Carbon storage versus albedo change: radiative forcing of forest expansion in temperate mountainous regions of Switzerland. Biogeosciences, 12(2), 467-487. https://doi.org/10.5194/bg-12-467-2015
Changes in the shear strength and micro-penetration hardness of a buried surface-hoar layer
Birkeland, K. W., Kronholm, K., Schneebeli, M., & Pielmeier, C. (2004). Changes in the shear strength and micro-penetration hardness of a buried surface-hoar layer. Annals of Glaciology, 38, 223-228. https://doi.org/10.3189/172756404781815167
Changing arctic snow cover: a review of recent developments and assessment of future needs for observations, modelling, and impacts
Bokhorst, S., Højlund Pedersen, S., Brucker, L., Anisimov, O., Bjerke, J. W., Brown, R. D., … Callaghan, T. V. (2016). Changing arctic snow cover: a review of recent developments and assessment of future needs for observations, modelling, and impacts. Ambio, 45(5), 516-537. https://doi.org/10.1007/s13280-016-0770-0
Characterizing the microstructural and micromechanical properties of snow
Johnson, J. B., & Schneebeli, M. (1999). Characterizing the microstructural and micromechanical properties of snow. Cold Regions Science and Technology, 30(1-3), 91-100. https://doi.org/10.1016/S0165-232x(99)00013-0
Characterizing the microstructural and micromechanical properties of snow
Johnson, J. B., & Schneebeli, M. (1998). Characterizing the microstructural and micromechanical properties of snow. In ISSW proceedings. International snow science workshop proceedings 1998 (pp. 49-58). Retrieved from http://arc.lib.montana.edu/snow-science/item/1470
Chemische Pistenpräparation – Grundlagenbericht
Schwörer, C., Rhyner, H., Rixen, C. C., Schneebeli, M., & Iten, B. (2007). Chemische Pistenpräparation – Grundlagenbericht. Davos: Eidgenössisches Institut für Schnee- und Lawinenforschung SLF.
 

Pages