| Fracture toughness of mixed-mode anticracks in highly porous materials
Adam, V., Bergfeld, B., Weißgraeber, P., van Herwijnen, A., & Rosendahl, P. L. (2024). Fracture toughness of mixed-mode anticracks in highly porous materials. Nature Communications, 15, 7379 (11 pp.). https://doi.org/10.1038/s41467-024-51491-7 |
| The effect of slope angle on critical cut length measured in propagation saw tests
Bergfeld, B., Adam, V., Rosendahl, P. L., & van Herwijnen, A. (2024). The effect of slope angle on critical cut length measured in propagation saw tests. In K. Gisnås, P. Gauer, H. Dahle, M. Eckerstorfer, A. Mannberg, & K. Müller (Eds.), Proceedings of the international Snow Science Workshop 2024 (pp. 524-529). Norwegian Geotechnical Institute. |
| Numerical investigation of crack propagation regimes in snow fracture experiments
Bobillier, G., Bergfeld, B., Dual, J., Gaume, J., van Herwijnen, A., & Schweizer, J. (2024). Numerical investigation of crack propagation regimes in snow fracture experiments. Granular Matter, 26(3), 58 (15 pp.). https://doi.org/10.1007/s10035-024-01423-5 |
| Towards an improved understanding of glide-snow avalanche release: interface shear cold laboratory tests
Bobillier, G., Fees, A., Lombardo, M., Schöttner, J., Cabrera, M., van Herwijnen, A., … Schweizer, J. (2024). Towards an improved understanding of glide-snow avalanche release: interface shear cold laboratory tests. In K. Gisnås, P. Gauer, H. Dahle, M. Eckerstorfer, A. Mannberg, & K. Müller (Eds.), Proceedings of the international Snow Science Workshop 2024 (pp. 745-749). Norwegian Geotechnical Institute. |
| Climate change impacts on snow avalanche activity and related risks
Eckert, N., Corona, C., Giacona, F., Gaume, J., Mayer, S., van Herwijnen, A., … Stoffel, M. (2024). Climate change impacts on snow avalanche activity and related risks. Nature Reviews Earth & Environment, 5, 369-389. https://doi.org/10.1038/s43017-024-00540-2 |
| Climate change impacts on snow avalanche activity and related risks: outcomes from a recent review
Eckert, N., Corona, C., Giacona, F., Gaume, J., Mayer, S., van Herwijnen, A., … Stoffel, M. (2024). Climate change impacts on snow avalanche activity and related risks: outcomes from a recent review. In K. Gisnås, P. Gauer, H. Dahle, M. Eckerstorfer, A. Mannberg, & K. Müller (Eds.), Proceedings of the international Snow Science Workshop 2024 (pp. 609-610). Norwegian Geotechnical Institute. |
| Glide-snow avalanche characteristics at different timescales extracted from time-lapse photography
Fees, A., van Herwijnen, A., Altenbach, M., Lombardo, M., & Schweizer, J. (2024). Glide-snow avalanche characteristics at different timescales extracted from time-lapse photography. Annals of Glaciology, 65, e3 (12 pp.). https://doi.org/10.1017/aog.2023.37 |
| Glide-snow avalanches: a mechanical, threshold-based release area model
Fees, A., van Herwijnen, A., Lombardo, M., Schweizer, J., & Lehmann, P. (2024). Glide-snow avalanches: a mechanical, threshold-based release area model. Natural Hazards and Earth System Sciences, 24(10), 3387-3400. https://doi.org/10.5194/nhess-24-3387-2024 |
| Glide-snow avalanches: insights from spatio-temporal soil and snow monitoring
Fees, A., Lombardo, M., van Herwijnen, A., & Schweizer, J. (2024). Glide-snow avalanches: insights from spatio-temporal soil and snow monitoring. In K. Gisnås, P. Gauer, H. Dahle, M. Eckerstorfer, A. Mannberg, & K. Müller (Eds.), Proceedings of the international Snow Science Workshop 2024 (pp. 701-705). Norwegian Geotechnical Institute. |
| Evaluation of the snow penetrometer scope
Hagenmuller, P., Reuter, B., van Herwijnen, A., Ramseyer, V., & Caillol, J. (2024). Evaluation of the snow penetrometer scope. In K. Gisnås, P. Gauer, H. Dahle, M. Eckerstorfer, A. Mannberg, & K. Müller (Eds.), Proceedings of the international Snow Science Workshop 2024 (pp. 1196-1201). Norwegian Geotechnical Institute. |
| Detecting the impact of climate change on alpine mass movements in observational records from the European Alps
Jacquemart, M., Weber, S., Chiarle, M., Chmiel, M., Cicoira, A., Corona, C., … Stoffel, M. (2024). Detecting the impact of climate change on alpine mass movements in observational records from the European Alps. Earth-Science Reviews, 258, 104886 (29 pp.). https://doi.org/10.1016/j.earscirev.2024.104886 |
| A method for imaging water transport in soil-snow systems with neutron radiography
Lombardo, M., Lehmann, P., Kaestner, A., Fees, A., van Herwijnen, A., & Schweizer, J. (2024). A method for imaging water transport in soil-snow systems with neutron radiography. Annals of Glaciology, 65, e8 (10 pp.). https://doi.org/10.1017/aog.2023.65 |
| Impact of climate change on snow avalanche activity in the Swiss Alps
Mayer, S., Hendrick, M., Michel, A., Richter, B., Schweizer, J., Wernli, H., & van Herwijnen, A. (2024). Impact of climate change on snow avalanche activity in the Swiss Alps. Cryosphere, 18(11), 5495-5517. https://doi.org/10.5194/tc-18-5495-2024 |
| Combining machine learning techniques for the automated detection of avalanches in seismic data
Pérez-Guillén, C., Simeon, A., Seupel, C., Volpi, M., Widmer, N., & van Herwijnen, A. (2024). Combining machine learning techniques for the automated detection of avalanches in seismic data. In K. Gisnås, P. Gauer, H. Dahle, M. Eckerstorfer, A. Mannberg, & K. Müller (Eds.), Proceedings of the international Snow Science Workshop 2024 (pp. 1191-1195). Norwegian Geotechnical Institute. |
| Integrating automated avalanche detections for validating and explaining avalanche forecasting models
Pérez-Guillén, C., Simeon, A., Techel, F., Volpi, M., Sovilla, B., & van Herwijnen, A. (2024). Integrating automated avalanche detections for validating and explaining avalanche forecasting models. In K. Gisnås, P. Gauer, H. Dahle, M. Eckerstorfer, A. Mannberg, & K. Müller (Eds.), Proceedings of the international Snow Science Workshop 2024 (pp. 52-57). Norwegian Geotechnical Institute. |
| Expanding the knowledge of weak-layer fracture into cross-slope direction
Rheinschmidt, F., Adam, V., Bergfeld, B., Walet, M. D. E., Schöttner, J., Weissgraeber, P., … Rosendahl, P. L. (2024). Expanding the knowledge of weak-layer fracture into cross-slope direction. In K. Gisnås, P. Gauer, H. Dahle, M. Eckerstorfer, A. Mannberg, & K. Müller (Eds.), Proceedings of the international Snow Science Workshop 2024 (pp. 426-431). Norwegian Geotechnical Institute. |
| A guidance for the interpretation of propagation saw tests
Rosendahl, P. L., Adam, V., Harvey, S., Bergfeld, B., Rheinschmidt, F., Walet, M. D. E., … Weissgraeber, P. (2024). A guidance for the interpretation of propagation saw tests. In K. Gisnås, P. Gauer, H. Dahle, M. Eckerstorfer, A. Mannberg, & K. Müller (Eds.), Proceedings of the international Snow Science Workshop 2024 (pp. 422-425). Norwegian Geotechnical Institute. |
| Developing two multiaxial testing machines to link strength and microstructure of weak snow layers
Schöttner, J., Marques, E., Eggert, B., Walet, M., Carbas, R., Adam, V., … van Herwijnen, A. (2024). Developing two multiaxial testing machines to link strength and microstructure of weak snow layers. In K. Gisnås, P. Gauer, H. Dahle, M. Eckerstorfer, A. Mannberg, & K. Müller (Eds.), Proceedings of the international Snow Science Workshop 2024 (pp. 520-523). Norwegian Geotechnical Institute. |
| Insights into the influence of snow microstructure on the compressive strength of weak layers
Schöttner, J., Walet, M., Rosendahl, P., Weißgraeber, P., Adam, V., Rheinschmidt, F., … van Herwijnen, A. (2024). Insights into the influence of snow microstructure on the compressive strength of weak layers. In K. Gisnås, P. Gauer, H. Dahle, M. Eckerstorfer, A. Mannberg, & K. Müller (Eds.), Proceedings of the international Snow Science Workshop 2024 (pp. 409-413). Norwegian Geotechnical Institute. |
| Using video detection of snow surface movements to estimate weak layer crack propagation speeds
Simenhois, R., Birkeland, K. W., Gaume, J., van Herwijnen, A., Bergfeld, B., Trottet, B., & Greene, E. (2024). Using video detection of snow surface movements to estimate weak layer crack propagation speeds. Annals of Glaciology, 65, e2 (11 pp.). https://doi.org/10.1017/aog.2023.36 |