Active Filters

  • (-) WSL Authors = Webster, Clare
  • (-) Keywords ≠ canopy cover
Search Results 1 - 20 of 20
  • RSS Feed
Select Page
Microclimate mapping using novel radiative transfer modelling
Zellweger, F., Sulmoni, E., Malle, J. T., Baltensweiler, A., Jonas, T., Zimmermann, N. E., … Webster, C. (2024). Microclimate mapping using novel radiative transfer modelling. Biogeosciences, 21(2), 605-623. https://doi.org/10.5194/bg-21-605-2024
Canopy structure, topography, and weather are equally important drivers of small-scale snow cover dynamics in sub-alpine forests
Mazzotti, G., Webster, C., Quéno, L., Cluzet, B., & Jonas, T. (2023). Canopy structure, topography, and weather are equally important drivers of small-scale snow cover dynamics in sub-alpine forests. Hydrology and Earth System Sciences, 27(11), 2099-2121. https://doi.org/10.5194/hess-27-2099-2023
Operational snow-hydrological modeling for Switzerland
Mott, R., Winstral, A., Cluzet, B., Helbig, N., Magnusson, J., Mazzotti, G., … Jonas, T. (2023). Operational snow-hydrological modeling for Switzerland. Frontiers in Earth Science, 11, 1228158 (20 pp.). https://doi.org/10.3389/feart.2023.1228158
Snow accumulation and ablation measurements in a midlatitude mountain coniferous forest (Col de Porte, France, 1325m altitude): The Snow under Forest (SnoUF) field campaign data set
Sicart, J. E., Ramseyer, V., Picard, G., Arnaud, L., Coulaud, C., Freche, G., … Essery, R. (2023). Snow accumulation and ablation measurements in a midlatitude mountain coniferous forest (Col de Porte, France, 1325m altitude): The Snow under Forest (SnoUF) field campaign data set. Earth System Science Data, 15(11), 5121-5133. https://doi.org/10.5194/essd-15-5121-2023
Using just a canopy height model to obtain lidar-level accuracy in 3D forest canopy shortwave transmissivity estimates
Webster, C., Essery, R., Mazzotti, G., & Jonas, T. (2023). Using just a canopy height model to obtain lidar-level accuracy in 3D forest canopy shortwave transmissivity estimates. Agricultural and Forest Meteorology, 338, 109429 (12 pp.). https://doi.org/10.1016/j.agrformet.2023.109429
Exploring snow distribution dynamics in steep forested slopes with UAV-borne LiDAR
Koutantou, K., Mazzotti, G., Brunner, P., Webster, C., & Jonas, T. (2022). Exploring snow distribution dynamics in steep forested slopes with UAV-borne LiDAR. Cold Regions Science and Technology, 200, 103587 (15 pp.). https://doi.org/10.1016/j.coldregions.2022.103587
Factors determining bryophyte species richness and community composition on insular siliceous erratic boulders in calcareous landscapes
Hepenstrick, D., Bergamini, A., Webster, C., Ginzler, C., & Holderegger, R. (2021). Factors determining bryophyte species richness and community composition on insular siliceous erratic boulders in calcareous landscapes. Journal of Vegetation Science, 32(6), e13094 (15 pp.). https://doi.org/10.1111/jvs.13094
Effect of forest canopy structure on wintertime Land Surface Albedo: evaluating CLM5 simulations with in‐situ measurements
Malle, J., Rutter, N., Webster, C., Mazzotti, G., Wake, L., & Jonas, T. (2021). Effect of forest canopy structure on wintertime Land Surface Albedo: evaluating CLM5 simulations with in‐situ measurements. Journal of Geophysical Research D: Atmospheres, 126(9), e2020JD034118 (15 pp.). https://doi.org/10.1029/2020JD034118
Increasing the physical representation of forest‐snow processes in coarse‐resolution models: lessons learned from upscaling hyper‐resolution simulations
Mazzotti, G., Webster, C., Essery, R., & Jonas, T. (2021). Increasing the physical representation of forest‐snow processes in coarse‐resolution models: lessons learned from upscaling hyper‐resolution simulations. Water Resources Research, 57(5), e2020WR029064 (21 pp.). https://doi.org/10.1029/2020WR029064
HPEval: a canopy shortwave radiation transmission model using high-resolution hemispherical images
Jonas, T., Webster, C., Mazzotti, G., & Malle, J. (2020). HPEval: a canopy shortwave radiation transmission model using high-resolution hemispherical images. Agricultural and Forest Meteorology, 284, 107903 (9 pp.). https://doi.org/10.1016/j.agrformet.2020.107903
Arctic rock coast responses under a changing climate
Lim, M., Strzelecki, M. C., Kasprzak, M., Swirad, Z. M., Webster, C., Woodward, J., & Gjelten, H. (2020). Arctic rock coast responses under a changing climate. Remote Sensing of Environment, 236, 111500 (11 pp.). https://doi.org/10.1016/j.rse.2019.111500
Process-level evaluation of a hyper-resolution forest snow model using distributed multi-sensor observations
Mazzotti, G., Essery, R., Webster, C., Malle, J., & Jonas, T. (2020). Process-level evaluation of a hyper-resolution forest snow model using distributed multi-sensor observations. Water Resources Research, 56(9), e2020WR027572 (25 pp.). https://doi.org/10.1029/2020WR027572
Enhancing airborne LiDAR data for improved forest structure representation in shortwave transmission models
Webster, C., Mazzotti, G., Essery, R., & Jonas, T. (2020). Enhancing airborne LiDAR data for improved forest structure representation in shortwave transmission models. Remote Sensing of Environment, 249, 112017 (15 pp.). https://doi.org/10.1016/j.rse.2020.112017
Bias correction of airborne thermal infrared observations over forests using melting snow
Pestana, S., Chickadel, C. C., Harpold, A., Kostadinov, T. S., Pai, H., Tyler, S., … Lundquist, J. D. (2019). Bias correction of airborne thermal infrared observations over forests using melting snow. Water Resources Research, 55(12), 11331-11343. https://doi.org/10.1029/2019WR025699
Simulation of longwave enhancement in boreal and montane forests
Todt, M., Rutter, N., Fletcher, C. G., Wake, L. M., Bartlett, P. A., Jonas, T., … Webster, C. (2018). Simulation of longwave enhancement in boreal and montane forests. Journal of Geophysical Research D: Atmospheres, 123, 13731-13747. https://doi.org/10.1029/2018JD028719
Three-dimensional thermal characterization of forest canopies using UAV photogrammetry
Webster, C., Westoby, M., Rutter, N., & Jonas, T. (2018). Three-dimensional thermal characterization of forest canopies using UAV photogrammetry. Remote Sensing of Environment, 209, 835-847. https://doi.org/10.1016/j.rse.2017.09.033
Improving representation of canopy temperatures for modeling subcanopy incoming longwave radiation to the snow surface
Webster, C., Rutter, N., & Jonas, T. (2017). Improving representation of canopy temperatures for modeling subcanopy incoming longwave radiation to the snow surface. Journal of Geophysical Research D: Atmospheres, 122(17), 9154-9172. https://doi.org/10.1002/2017JD026581
Chemical and physical influences on aerosol activation in liquid clouds: a study based on observations from the Jungfraujoch, Switzerland
Hoyle, C. R., Webster, C. S., Rieder, H. E., Nenes, A., Hammer, E., Herrmann, E., … Baltensperger, U. (2016). Chemical and physical influences on aerosol activation in liquid clouds: a study based on observations from the Jungfraujoch, Switzerland. Atmospheric Chemistry and Physics, 16(6), 4043-4061. https://doi.org/10.5194/acp-16-4043-2016
Measurement of incoming radiation below forest canopies: a comparison of different radiometer configurations
Webster, C., Rutter, N., Zahner, F., & Jonas, T. (2016). Measurement of incoming radiation below forest canopies: a comparison of different radiometer configurations. Journal of Hydrometeorology, 17(3), 853-864. https://doi.org/10.1175/JHM-D-15-0125.1
Modeling subcanopy incoming longwave radiation to seasonal snow using air and tree trunk temperatures
Webster, C., Rutter, N., Zahner, F., & Jonas, T. (2016). Modeling subcanopy incoming longwave radiation to seasonal snow using air and tree trunk temperatures. Journal of Geophysical Research D: Atmospheres, 121(3), 1220-1235. https://doi.org/10.1002/2015JD024099