| Quantifying Antarctic‐wide ice‐shelf surface melt volume using microwave and firn model data: 1980 to 2021
Banwell, A. F., Wever, N., Dunmire, D., & Picard, G. (2023). Quantifying Antarctic‐wide ice‐shelf surface melt volume using microwave and firn model data: 1980 to 2021. Geophysical Research Letters, 50(12), e2023GL102744 (11 pp.). https://doi.org/10.1029/2023GL102744 |
| A wind-driven snow redistribution module for Alpine3D v3.3.0: adaptations designed for downscaling ice sheet surface mass balance
Keenan, E., Wever, N., Lenaerts, J. T. M., & Medley, B. (2023). A wind-driven snow redistribution module for Alpine3D v3.3.0: adaptations designed for downscaling ice sheet surface mass balance. Geoscientific Model Development, 16(11), 3203-3219. https://doi.org/10.5194/gmd-16-3203-2023 |
| An evaluation of a physics-based firn model and a semi-empirical firn model across the Greenland Ice Sheet (1980–2020)
Thompson-Munson, M., Wever, N., Stevens, C. M., Lenaerts, J. T. M., & Medley, B. (2023). An evaluation of a physics-based firn model and a semi-empirical firn model across the Greenland Ice Sheet (1980–2020). Cryosphere, 17(5), 2185-2209. https://doi.org/10.5194/tc-17-2185-2023 |
| Snow cover duration trends observed at sites and predicted by multiple models
Essery, R., Kim, H., Wang, L., Bartlett, P., Boone, A., Brutel-Vuilmet, C., … Yuan, H. (2020). Snow cover duration trends observed at sites and predicted by multiple models. Cryosphere, 14(12), 4687-4698. https://doi.org/10.5194/tc-14-4687-2020 |
| The impact of diffusive water vapor transport on snow profiles in deep and shallow snow covers and on sea ice
Jafari, M., Gouttevin, I., Couttet, M., Wever, N., Michel, A., Sharma, V., … Lehning, M. (2020). The impact of diffusive water vapor transport on snow profiles in deep and shallow snow covers and on sea ice. Frontiers in Earth Science, 8, 249 (25 pp.). https://doi.org/10.3389/feart.2020.00249 |
| Scientific and human errors in a snow model intercomparison
Menard, C. B., Essery, R., Krinner, G., Arduini, G., Bartlett, P., Boone, A., … Yuan, H. (2020). Scientific and human errors in a snow model intercomparison. Bulletin of the American Meteorological Society, 102(1), E61-E79. https://doi.org/10.1175/BAMS-D-19-0329.1 |
| Version 1 of a sea ice module for the physics-based, detailed, multi-layer SNOWPACK model
Wever, N., Rossmann, L., Maaß, N., Leonard, K. C., Kaleschke, L., Nicolaus, M., & Lehning, M. (2020). Version 1 of a sea ice module for the physics-based, detailed, multi-layer SNOWPACK model. Geoscientific Model Development, 13(1), 99-119. https://doi.org/10.5194/gmd-13-99-2020 |
| Meteorological and evaluation datasets for snow modelling at 10 reference sites: description of in situ and bias-corrected reanalysis data
Ménard, C. B., Essery, R., Barr, A., Bartlett, P., Derry, J., Dumont, M., … Wever, N. (2019). Meteorological and evaluation datasets for snow modelling at 10 reference sites: description of in situ and bias-corrected reanalysis data. Earth System Science Data, 11(2), 865-880. https://doi.org/10.5194/essd-11-865-2019 |
| ESM-SnowMIP: assessing snow models and quantifying snow-related climate feedbacks
Krinner, G., Derksen, C., Essery, R., Flanner, M., Hagemann, S., Clark, M., … Zhu, D. (2018). ESM-SnowMIP: assessing snow models and quantifying snow-related climate feedbacks. Geoscientific Model Development, 11(12), 5027-5049. https://doi.org/10.5194/gmd-11-5027-2018 |
| Investigation of a wind-packing event in Queen Maud Land, Antarctica
Sommer, C. G., Wever, N., Fierz, C., & Lehning, M. (2018). Investigation of a wind-packing event in Queen Maud Land, Antarctica. Cryosphere, 12(9), 2923-2939. https://doi.org/10.5194/tc-12-2923-2018 |
| Coupled snow cover and avalanche dynamics simulations to evaluate wet snow avalanche activity
Wever, N., Vera Valero, C., & Techel, F. (2018). Coupled snow cover and avalanche dynamics simulations to evaluate wet snow avalanche activity. Journal of Geophysical Research F: Earth Surface, 123, 1772-1796. https://doi.org/10.1029/2017JF004515 |
| Snow fracture in relation to slab avalanche release: critical state for the onset of crack propagation
Gaume, J., van Herwijnen, A., Chambon, G., Wever, N., & Schweizer, J. (2017). Snow fracture in relation to slab avalanche release: critical state for the onset of crack propagation. Cryosphere, 11(1), 217-228. https://doi.org/10.5194/tc-11-217-2017 |
| Distributed snow and rock temperature modelling in steep rock walls using Alpine3D
Haberkorn, A., Wever, N., Hoelzle, M., Phillips, M., Kenner, R., Bavay, M., & Lehning, M. (2017). Distributed snow and rock temperature modelling in steep rock walls using Alpine3D. Cryosphere, 11(1), 585-607. https://doi.org/10.5194/tc-11-585-2017 |
| Firn meltwater retention on the Greenland Ice Sheet: a model comparison
Steger, C. R., Reijmer, C. H., van den Broeke, M. R., Wever, N., Forster, R. R., Koenig, L. S., … Noël, B. P. Y. (2017). Firn meltwater retention on the Greenland Ice Sheet: a model comparison. Frontiers in Earth Science, 5, 3 (16 pp.). https://doi.org/10.3389/feart.2017.00003 |
| Simulating the influence of snow surface processes on soil moisture dynamics and streamflow generation in an alpine catchment
Wever, N., Comola, F., Bavay, M., & Lehning, M. (2017). Simulating the influence of snow surface processes on soil moisture dynamics and streamflow generation in an alpine catchment. Hydrology and Earth System Sciences, 21(8), 4053-4071. https://doi.org/10.5194/hess-21-4053-2017 |
| Modelling liquid water transport in snow under rain-on-snow conditions – considering preferential flow
Würzer, S., Wever, N., Juras, R., Lehning, M., & Jonas, T. (2017). Modelling liquid water transport in snow under rain-on-snow conditions – considering preferential flow. Hydrology and Earth System Sciences, 21(3), 1741-1756. https://doi.org/10.5194/hess-21-1741-2017 |
| Critical length for the onset of crack propagation in snow: reconciling shear and collapse
Gaume, J., Van Herwijnen, A., Chambon, G., Wever, N., & Schweizer, J. (2016). Critical length for the onset of crack propagation in snow: reconciling shear and collapse. In ISSW proceedings. International snow science workshop proceedings 2016 (pp. 12-16). |
| Modelling wet snow avalanche runout to assess road safety at a high-altitude mine in the central Andes
Vera Valero, C., Wever, N., Bühler, Y., Stoffel, L., Margreth, S., & Bartelt, P. (2016). Modelling wet snow avalanche runout to assess road safety at a high-altitude mine in the central Andes. Natural Hazards and Earth System Sciences, 16(11), 2303-2323. https://doi.org/10.5194/nhess-16-2303-2016 |
| Scaling precipitation input to spatially distributed hydrological models by measured snow distribution
Vögeli, C., Lehning, M., Wever, N., & Bavay, M. (2016). Scaling precipitation input to spatially distributed hydrological models by measured snow distribution. Frontiers in Earth Science, 4, 108 (15 pp.). https://doi.org/10.3389/feart.2016.00108 |
| Assessing wet snow avalanche activity using detailed physics based snowpack simulations
Wever, N., Vera Valero, C., & Fierz, C. (2016). Assessing wet snow avalanche activity using detailed physics based snowpack simulations. Geophysical Research Letters, 43(11), 5732-5740. https://doi.org/10.1002/2016GL068428 |