Active Filters

  • (-) WSL Authors = Wever, Nander
  • (-) WSL Research Units ≠ Snow Avalanches and Prevention
Search Results 1 - 20 of 27
Select Page
Firn on ice sheets
Amory, C., Buizert, C., Buzzard, S., Case, E., Clerx, N., Culberg, R., … Wouters, B. (2024). Firn on ice sheets. Nature Reviews Earth & Environment, 5, 79-99. https://doi.org/10.1038/s43017-023-00507-9
Antarctic-wide ice-shelf firn emulation reveals robust future firn air depletion signal for the Antarctic Peninsula
Dunmire, D., Wever, N., Banwell, A. F., & Lenaerts, J. T. M. (2024). Antarctic-wide ice-shelf firn emulation reveals robust future firn air depletion signal for the Antarctic Peninsula. Communications Earth & Environment, 5(1), 100 (13 pp.). https://doi.org/10.1038/s43247-024-01255-4
The extraordinary March 2022 East Antarctica “heat” wave. Part I: observations and meteorological drivers
Wille, J. D., Alexander, S. P., Amory, C., Baiman, R., Barthélemy, L., Bergstrom, D. M., … Zou, X. (2024). The extraordinary March 2022 East Antarctica “heat” wave. Part I: observations and meteorological drivers. Journal of Climate, 37(3), 757-778. https://doi.org/10.1175/JCLI-D-23-0175.1
The extraordinary March 2022 East Antarctica “heat” wave. Part II: impacts on the Antarctic ice sheet
Wille, J. D., Alexander, S. P., Amory, C., Baiman, R., Barthélemy, L., Bergstrom, D. M., … Zou, X. (2024). The extraordinary March 2022 East Antarctica “heat” wave. Part II: impacts on the Antarctic ice sheet. Journal of Climate, 37(3), 779-799. https://doi.org/10.1175/JCLI-D-23-0176.1
Quantifying Antarctic‐wide ice‐shelf surface melt volume using microwave and firn model data: 1980 to 2021
Banwell, A. F., Wever, N., Dunmire, D., & Picard, G. (2023). Quantifying Antarctic‐wide ice‐shelf surface melt volume using microwave and firn model data: 1980 to 2021. Geophysical Research Letters, 50(12), e2023GL102744 (11 pp.). https://doi.org/10.1029/2023GL102744
A wind-driven snow redistribution module for Alpine3D v3.3.0: adaptations designed for downscaling ice sheet surface mass balance
Keenan, E., Wever, N., Lenaerts, J. T. M., & Medley, B. (2023). A wind-driven snow redistribution module for Alpine3D v3.3.0: adaptations designed for downscaling ice sheet surface mass balance. Geoscientific Model Development, 16(11), 3203-3219. https://doi.org/10.5194/gmd-16-3203-2023
An evaluation of a physics-based firn model and a semi-empirical firn model across the Greenland Ice Sheet (1980–2020)
Thompson-Munson, M., Wever, N., Stevens, C. M., Lenaerts, J. T. M., & Medley, B. (2023). An evaluation of a physics-based firn model and a semi-empirical firn model across the Greenland Ice Sheet (1980–2020). Cryosphere, 17(5), 2185-2209. https://doi.org/10.5194/tc-17-2185-2023
Snow cover duration trends observed at sites and predicted by multiple models
Essery, R., Kim, H., Wang, L., Bartlett, P., Boone, A., Brutel-Vuilmet, C., … Yuan, H. (2020). Snow cover duration trends observed at sites and predicted by multiple models. Cryosphere, 14(12), 4687-4698. https://doi.org/10.5194/tc-14-4687-2020
The impact of diffusive water vapor transport on snow profiles in deep and shallow snow covers and on sea ice
Jafari, M., Gouttevin, I., Couttet, M., Wever, N., Michel, A., Sharma, V., … Lehning, M. (2020). The impact of diffusive water vapor transport on snow profiles in deep and shallow snow covers and on sea ice. Frontiers in Earth Science, 8, 249 (25 pp.). https://doi.org/10.3389/feart.2020.00249
Scientific and human errors in a snow model intercomparison
Menard, C. B., Essery, R., Krinner, G., Arduini, G., Bartlett, P., Boone, A., … Yuan, H. (2020). Scientific and human errors in a snow model intercomparison. Bulletin of the American Meteorological Society, 102(1), E61-E79. https://doi.org/10.1175/BAMS-D-19-0329.1
Version 1 of a sea ice module for the physics-based, detailed, multi-layer SNOWPACK model
Wever, N., Rossmann, L., Maaß, N., Leonard, K. C., Kaleschke, L., Nicolaus, M., & Lehning, M. (2020). Version 1 of a sea ice module for the physics-based, detailed, multi-layer SNOWPACK model. Geoscientific Model Development, 13(1), 99-119. https://doi.org/10.5194/gmd-13-99-2020
Meteorological and evaluation datasets for snow modelling at 10 reference sites: description of in situ and bias-corrected reanalysis data
Ménard, C. B., Essery, R., Barr, A., Bartlett, P., Derry, J., Dumont, M., … Wever, N. (2019). Meteorological and evaluation datasets for snow modelling at 10 reference sites: description of in situ and bias-corrected reanalysis data. Earth System Science Data, 11(2), 865-880. https://doi.org/10.5194/essd-11-865-2019
ESM-SnowMIP: assessing snow models and quantifying snow-related climate feedbacks
Krinner, G., Derksen, C., Essery, R., Flanner, M., Hagemann, S., Clark, M., … Zhu, D. (2018). ESM-SnowMIP: assessing snow models and quantifying snow-related climate feedbacks. Geoscientific Model Development, 11(12), 5027-5049. https://doi.org/10.5194/gmd-11-5027-2018
Investigation of a wind-packing event in Queen Maud Land, Antarctica
Sommer, C. G., Wever, N., Fierz, C., & Lehning, M. (2018). Investigation of a wind-packing event in Queen Maud Land, Antarctica. Cryosphere, 12(9), 2923-2939. https://doi.org/10.5194/tc-12-2923-2018
Distributed snow and rock temperature modelling in steep rock walls using Alpine3D
Haberkorn, A., Wever, N., Hoelzle, M., Phillips, M., Kenner, R., Bavay, M., & Lehning, M. (2017). Distributed snow and rock temperature modelling in steep rock walls using Alpine3D. Cryosphere, 11(1), 585-607. https://doi.org/10.5194/tc-11-585-2017
Firn meltwater retention on the Greenland Ice Sheet: a model comparison
Steger, C. R., Reijmer, C. H., van den Broeke, M. R., Wever, N., Forster, R. R., Koenig, L. S., … Noël, B. P. Y. (2017). Firn meltwater retention on the Greenland Ice Sheet: a model comparison. Frontiers in Earth Science, 5, 3 (16 pp.). https://doi.org/10.3389/feart.2017.00003
Simulating the influence of snow surface processes on soil moisture dynamics and streamflow generation in an alpine catchment
Wever, N., Comola, F., Bavay, M., & Lehning, M. (2017). Simulating the influence of snow surface processes on soil moisture dynamics and streamflow generation in an alpine catchment. Hydrology and Earth System Sciences, 21(8), 4053-4071. https://doi.org/10.5194/hess-21-4053-2017
Modelling liquid water transport in snow under rain-on-snow conditions – considering preferential flow
Würzer, S., Wever, N., Juras, R., Lehning, M., & Jonas, T. (2017). Modelling liquid water transport in snow under rain-on-snow conditions – considering preferential flow. Hydrology and Earth System Sciences, 21(3), 1741-1756. https://doi.org/10.5194/hess-21-1741-2017
Scaling precipitation input to spatially distributed hydrological models by measured snow distribution
Vögeli, C., Lehning, M., Wever, N., & Bavay, M. (2016). Scaling precipitation input to spatially distributed hydrological models by measured snow distribution. Frontiers in Earth Science, 4, 108 (15 pp.). https://doi.org/10.3389/feart.2016.00108
Simulating ice layer formation under the presence of preferential flow in layered snowpacks
Wever, N., Würzer, S., Fierz, C., & Lehning, M. (2016). Simulating ice layer formation under the presence of preferential flow in layered snowpacks. Cryosphere, 10(6), 2731-2744. https://doi.org/10.5194/tc-10-2731-2016