Active Filters

  • (-) Keywords = debris flow
Search Results 1 - 20 of 38
Select Page
The Swiss flood and landslide damage database: normalisation and trends
Andres, N., & Badoux, A. (2019). The Swiss flood and landslide damage database: normalisation and trends. Journal of Flood Risk Management, 12(S1), e12510 (12 pp.). https://doi.org/10.1111/jfr3.12510
Debris-flow monitoring and warning: review and examples
Hürlimann, M., Coviello, V., Bel, C., Guo, X., Berti, M., Graf, C., … Yin, H. Y. (2019). Debris-flow monitoring and warning: review and examples. Earth-Science Reviews, 199, 102981 (26 pp.). https://doi.org/10.1016/j.earscirev.2019.102981
Small scale debris-flow experiments on run-up height
Rickenmann, D., Karrer, T., McArdell, B., & Scheidl, C. (2019). Small scale debris-flow experiments on run-up height. In J. W. Kean, J. A. Coe, P. M. Santi, & B. K. Guillen (Eds.), Association of environmental and engineering geologists special publication: Vol. 28. Debris-flow hazards mitigation: mechanics, monitoring, modeling, and assessment (pp. 414-420). https://doi.org/10.25676/11124/173191
Characterization of wood-laden flows in rivers
Ruiz-Villanueva, V., Mazzorana, B., Bladé, E., Bürkli, L., Iribarren-Anacona, P., Mao, L., … Wohl, E. (2019). Characterization of wood-laden flows in rivers. Earth Surface Processes and Landforms, 44, 1694-1709. https://doi.org/10.1002/esp.4603
Deciphering debris-flow seismograms at Illgraben, Switzerland
Wenner, M., Walter, F., McArdell, B., & Farinotti, D. (2019). Deciphering debris-flow seismograms at Illgraben, Switzerland. In J. W. Kean, J. A. Coe, P. M. Santi, & B. K. Guillen (Eds.), Association of environmental and engineering geologists special publication: Vol. 28. Debris-flow hazards mitigation: mechanics, monitoring, modeling, and assessment (pp. 222-229). sine loco: Association of Environmental and Engineering Geologists.
Using the monoplotting technique for documenting and analyzing natural hazard events
Conedera, M., Bozzini, C., Ryter, U., Bertschinger, T., & Krebs, P. (2018). Using the monoplotting technique for documenting and analyzing natural hazard events. In J. Simão Antunes Do Carmo (Ed.), IntechOpen. Natural hazards: risk assessment and vulnerability reduction (pp. 107-108). https://doi.org/10.5772/intechopen.77321
Ecosystem-based disaster risk reduction in mountains
Moos, C., Bebi, P., Schwarz, M., Stoffel, M., Sudmeier-Rieux, K., & Dorren, L. (2018). Ecosystem-based disaster risk reduction in mountains. Earth-Science Reviews, 177, 497-513. https://doi.org/10.1016/j.earscirev.2017.12.011
Automatic identification of alpine mass movements by a combination of seismic and infrasound sensors
Schimmel, A., Hübl, J., McArdell, B., & Walter, F. (2018). Automatic identification of alpine mass movements by a combination of seismic and infrasound sensors. Sensors, 18(5), 1658 (19 pp.). https://doi.org/10.3390/s18051658
Linking rainfall-induced landslides with debris flows runout patterns towards catchment scale hazard assessment
Fan, L., Lehmann, P., McArdell, B., & Or, D. (2017). Linking rainfall-induced landslides with debris flows runout patterns towards catchment scale hazard assessment. Geomorphology, 280, 1-15. https://doi.org/10.1016/j.geomorph.2016.10.007
3D dynamics of debris flows quantified at sub-second intervals from laser profiles
Jacquemart, M., Meier, L., Graf, C., & Morsdorf, F. (2017). 3D dynamics of debris flows quantified at sub-second intervals from laser profiles. Natural Hazards, 89(2), 785-800. https://doi.org/10.1007/s11069-017-2993-1
Methods of data processing for debris flow seismic warning
Arattano, M., Coviello, V., Abancó, C., Hürlimann, M., & McArdell, B. W. (2016). Methods of data processing for debris flow seismic warning. International Journal of Erosion Control Engineering, 9(3), 114-121. https://doi.org/10.13101/ijece.9.114
Dispersive pressure, boundary jerk and configurational changes in debris flows
Bartelt, P., McArdell, B., Graf, C., Christen, M., & Buser, O. (2016). Dispersive pressure, boundary jerk and configurational changes in debris flows. International Journal of Erosion Control Engineering, 9(1), 1-6. https://doi.org/10.13101/ijece.9.1
Reply to "Discussion of "The relation between dilatancy, effective stress and dispersive pressure in granular avalanches" by P. Bartelt and O. Buser (DOI: 10.1007/s11440-016-0463-7)" by Richard Iverson and David L. George (DOI: 10.1007/s11440-016-0502-4)
Bartelt, P., & Buser, O. (2016). Reply to "Discussion of "The relation between dilatancy, effective stress and dispersive pressure in granular avalanches" by P. Bartelt and O. Buser (DOI: 10.1007/s11440-016-0463-7)" by Richard Iverson and David L. George (DOI: 10.1007/s11440-016-0502-4). Acta Geotechnica, 11(6), 1469-1473. https://doi.org/10.1007/s11440-016-0503-3
A comparison of physical and computer-based debris flow modelling of a deflection structure at Illgraben, Switzerland
Berger, C., Christen, M., Speerli, J., Lauber, G., Ulrich, M., & McArdell, B. W. (2016). A comparison of physical and computer-based debris flow modelling of a deflection structure at Illgraben, Switzerland. In G. Koboltschnig (Ed.), 13th congress INTERPRAEVENT 2016. 30 May to 2 June 2016. Lucerne, Switzerland. Conference proceedings "Living with natural risks" (pp. 212-220). Retrieved from http://www.interpraevent.at/?tpl=tagungsbaende_detail.php&band_id=2720&menu=221
Integrated natural hazards protection concept Vitznau LU - case study Plattenbach
Hohermuth, B., Graf, C., & Heilig, J. (2016). Integrated natural hazards protection concept Vitznau LU - case study Plattenbach. In G. Koboltschnig (Ed.), 13th congress INTERPRAEVENT 2016. 30 May to 2 June 2016. Lucerne, Switzerland. Conference proceedings "Living with natural risks" (pp. 535-543). Retrieved from http://www.interpraevent.at/?tpl=tagungsbaende_detail.php&band_id=2720&menu=221
Integrales Schutzkonzept Bielzug
Oggier, N., Graf, C., Delaloye, R., & Burkard, A. (2016). Integrales Schutzkonzept Bielzug. In G. Koboltschnig (Ed.), 13th congress INTERPRAEVENT 2016. 30 May to 2 June 2016. Lucerne, Switzerland. Conference proceedings "Living with natural risks" (pp. 525-534). Retrieved from http://www.interpraevent.at/?tpl=tagungsbaende_detail.php&band_id=2720&menu=221
Debris-flow hazard assessment and methods applied in engineering practice
Rickenmann, D. (2016). Debris-flow hazard assessment and methods applied in engineering practice. International Journal of Erosion Control Engineering, 9(3), 80-90. https://doi.org/10.13101/ijece.9.80
Sediment input from debris flows into mountain rivers: an event-based perspective
Rickenmann, D., Gerber, M., & Böckli, M. (2016). Sediment input from debris flows into mountain rivers: an event-based perspective. In G. Koboltschnig (Ed.), 13th congress INTERPRAEVENT 2016. 30 May to 2 June 2016. Lucerne, Switzerland. Conference proceedings "Living with natural risks" (pp. 601-609). Retrieved from http://www.interpraevent.at/?tpl=tagungsbaende_detail.php&band_id=2720&menu=221
Significance of sediment transport processes during piedmont floods: the 2005 flood events in Switzerland
Rickenmann, D., Badoux, A., & Hunzinger, L. (2016). Significance of sediment transport processes during piedmont floods: the 2005 flood events in Switzerland. Earth Surface Processes and Landforms, 41(2), 224-230. https://doi.org/10.1002/esp.3835
Debris-flow velocities and superelevation in a curved laboratory channel
Scheidl, C., McArdell, B. W., & Rickenmann, D. (2015). Debris-flow velocities and superelevation in a curved laboratory channel. Canadian Geotechnical Journal, 52(3), 305-317. https://doi.org/10.1139/cgj-2014-0081