Active Filters

  • (-) Publication Type ≠ Proceedings Paper
  • (-) Funding (EC, SNSF) = Unified modeling of snow and avalanche mechanics using the material point method
Search Results 1 - 18 of 18
  • RSS Feed
Select Page
Transient wave activity in snow avalanches is controlled by entrainment and topography
Li, X., Sovilla, B., Gray, J. M. N. T., & Gaume, J. (2024). Transient wave activity in snow avalanches is controlled by entrainment and topography. Communications Earth & Environment, 5(1), 77 (11 pp.). https://doi.org/10.1038/s43247-023-01157-x
Modelling erosion, entrainment and deposition in cohesive granular flows: application to dense snow avalanches
Ligneau, C., Sovilla, B., & Gaume, J. (2024). Modelling erosion, entrainment and deposition in cohesive granular flows: application to dense snow avalanches. Cold Regions Science and Technology, 219, 104103 (14 pp.). https://doi.org/10.1016/j.coldregions.2023.104103
Microstructural controls on the plastic consolidation of porous brittle solids
Blatny, L., Löwe, H., & Gaume, J. (2023). Microstructural controls on the plastic consolidation of porous brittle solids. Acta Materialia, 250, 118861 (14 pp.). https://doi.org/10.1016/j.actamat.2023.118861
A depth‐averaged material point method for shallow landslides: applications to snow slab avalanche release
Guillet, L., Blatny, L., Trottet, B., Steffen, D., & Gaume, J. (2023). A depth‐averaged material point method for shallow landslides: applications to snow slab avalanche release. Journal of Geophysical Research F: Earth Surface, 128(8), e2023JF007092 (28 pp.). https://doi.org/10.1029/2023JF007092
A theoretical framework for dynamic anticrack and supershear propagation in snow slab avalanches
Siron, M., Trottet, B., & Gaume, J. (2023). A theoretical framework for dynamic anticrack and supershear propagation in snow slab avalanches. Journal of the Mechanics and Physics of Solids, 181, 105428 (18 pp.). https://doi.org/10.1016/j.jmps.2023.105428
Microstructural origin of propagating compaction patterns in porous media
Blatny, L., Berclaz, P., Guillard, F., Einav, I., & Gaume, J. (2022). Microstructural origin of propagating compaction patterns in porous media. Physical Review Letters, 128(22), 228002 (6 pp.). https://doi.org/10.1103/PhysRevLett.128.228002
Towards a predictive multi-phase model for alpine mass movements and process cascades
Cicoira, A., Blatny, L., Li, X., Trottet, B., & Gaume, J. (2022). Towards a predictive multi-phase model for alpine mass movements and process cascades. Engineering Geology, 310, 106866 (15 pp.). https://doi.org/10.1016/j.enggeo.2022.106866
Physics-based estimates of drag coefficients for the impact pressure calculation of dense snow avalanches
Kyburz, M. L., Sovilla, B., Gaume, J., & Ancey, C. (2022). Physics-based estimates of drag coefficients for the impact pressure calculation of dense snow avalanches. Engineering Structures, 254, 113478 (17 pp.). https://doi.org/10.1016/j.engstruct.2021.113478
The concept of the mobilized domain: how it can explain and predict the forces exerted by a cohesive granular avalanche on an obstacle
Kyburz, M. L., Sovilla, B., Gaume, J., & Ancey, C. (2022). The concept of the mobilized domain: how it can explain and predict the forces exerted by a cohesive granular avalanche on an obstacle. Granular Matter, 24(2), 45 (17 pp.). https://doi.org/10.1007/s10035-021-01196-1
Different erosion and entrainment mechanisms in snow avalanches
Li, X., Sovilla, B., Ligneau, C., Jiang, C., & Gaume, J. (2022). Different erosion and entrainment mechanisms in snow avalanches. Mechanics Research Communications, 124, 103914 (8 pp.). https://doi.org/10.1016/j.mechrescom.2022.103914
Computational micromechanics of porous brittle solids
Blatny, L., Löwe, H., Wang, S., & Gaume, J. (2021). Computational micromechanics of porous brittle solids. Computers and Geotechnics, 140, 104284 (13 pp.). https://doi.org/10.1016/j.compgeo.2021.104284
Three-dimensional and real-scale modeling of flow regimes in dense snow avalanches
Li, X., Sovilla, B., Jiang, C., & Gaume, J. (2021). Three-dimensional and real-scale modeling of flow regimes in dense snow avalanches. Landslides, 18, 3393-3406. https://doi.org/10.1007/s10346-021-01692-8
Microscopic origin of nonlocal rheology in dense granular materials
Gaume, J., Chambon, G., & Naaim, M. (2020). Microscopic origin of nonlocal rheology in dense granular materials. Physical Review Letters, 125(18), 188001 (5 pp.). https://doi.org/10.1103/PhysRevLett.125.188001
Decoupling the role of inertia, friction, and cohesion in dense granular avalanche pressure build-up on obstacles
Kyburz, M. L., Sovilla, B., Gaume, J., & Ancey, C. (2020). Decoupling the role of inertia, friction, and cohesion in dense granular avalanche pressure build-up on obstacles. Journal of Geophysical Research F: Earth Surface, 125(2), e2019JF005192 (18 pp.). https://doi.org/10.1029/2019JF005192
Microstructural controls of anticrack nucleation in highly porous brittle solids
Ritter, J., Löwe, H., & Gaume, J. (2020). Microstructural controls of anticrack nucleation in highly porous brittle solids. Scientific Reports, 10(1), 12383 (10 pp.). https://doi.org/10.1038/s41598-020-67926-2
Cohesion‐induced enhancement of aeolian saltation
Comola, F., Gaume, J., Kok, J. F., & Lehning, M. (2019). Cohesion‐induced enhancement of aeolian saltation. Geophysical Research Letters, 46(10), 5566-5574. https://doi.org/10.1029/2019GL082195
Investigating the release and flow of snow avalanches at the slope-scale using a unified model based on the material point method
Gaume, J., van Herwijnen, A., Gast, T., Teran, J., & Jiang, C. (2019). Investigating the release and flow of snow avalanches at the slope-scale using a unified model based on the material point method. Cold Regions Science and Technology, 168, 102847 (10 pp.). https://doi.org/10.1016/j.coldregions.2019.102847
Numerical investigation of the mixed-mode failure of snow
Mulak, D., & Gaume, J. (2019). Numerical investigation of the mixed-mode failure of snow. Computational Particle Mechanics, 6, 439-447. https://doi.org/10.1007/s40571-019-00224-5