Active Filters

  • (-) Publication Status = Published
  • (-) WSL Research Units ≠ Land Change Science
  • (-) Journal = Cryosphere
Search Results 1 - 20 of 136

Pages

  • RSS Feed
Select Page
Modeling snowpack dynamics and surface energy budget in boreal and subarctic peatlands and forests
Nousu, J. P., Lafaysse, M., Mazzotti, G., Ala-Aho, P., Marttila, H., Cluzet, B., … Launiainen, S. (2024). Modeling snowpack dynamics and surface energy budget in boreal and subarctic peatlands and forests. Cryosphere, 18(1), 231-263. https://doi.org/10.5194/tc-18-231-2024
Everest South Col Glacier did not thin during the period 1984-2017
Brun, F., King, O., Réveillet, M., Amory, C., Planchot, A., Berthier, E., … Wagnon, P. (2023). Everest South Col Glacier did not thin during the period 1984-2017. Cryosphere, 17(8), 3251-3268. https://doi.org/10.5194/tc-17-3251-2023
The benefits of homogenising snow depth series - impacts on decadal trends and extremes for Switzerland
Buchmann, M., Resch, G., Begert, M., Brönnimann, S., Chimani, B., Schöner, W., & Marty, C. (2023). The benefits of homogenising snow depth series - impacts on decadal trends and extremes for Switzerland. Cryosphere, 17(2), 653-671. https://doi.org/10.5194/tc-17-653-2023
European heat waves 2022: contribution to extreme glacier melt in Switzerland inferred from automated ablation readings
Cremona, A., Huss, M., Landmann, J. M., Borner, J., & Farinotti, D. (2023). European heat waves 2022: contribution to extreme glacier melt in Switzerland inferred from automated ablation readings. Cryosphere, 17(5), 1895-1912. https://doi.org/10.5194/tc-17-1895-2023
Spatio-temporal reconstruction of winter glacier mass balance in the Alps, Scandinavia, Central Asia and western Canada (1981-2019) using climate reanalyses and machine learning
Guidicelli, M., Huss, M., Gabella, M., & Salzmann, N. (2023). Spatio-temporal reconstruction of winter glacier mass balance in the Alps, Scandinavia, Central Asia and western Canada (1981-2019) using climate reanalyses and machine learning. Cryosphere, 17(2), 977-1002. https://doi.org/10.5194/tc-17-977-2023
Monitoring snow water equivalent using the phase of RFID signals
Le Breton, M., Larose, É., Baillet, L., Lejeune, Y., & van Herwijnen, A. (2023). Monitoring snow water equivalent using the phase of RFID signals. Cryosphere, 17(8), 3137-3156. https://doi.org/10.5194/tc-17-3137-2023
Greenland and Canadian Arctic ice temperature profiles database
Løkkegaard, A., Mankoff, K. D., Zdanowicz, C., Clow, G. D., Lüthi, M. P., Doyle, S. H., … Colgan, W. T. (2023). Greenland and Canadian Arctic ice temperature profiles database. Cryosphere, 17(9), 3829-3845. https://doi.org/10.5194/tc-17-3829-2023
Temporospatial variability of snow's thermal conductivity on Arctic sea ice
MacFarlane, A. R., Löwe, H., Gimenes, L., Wagner, D. N., Dadic, R., Ottersberg, R., … Schneebeli, M. (2023). Temporospatial variability of snow's thermal conductivity on Arctic sea ice. Cryosphere, 17(12), 5417-5434. https://doi.org/10.5194/tc-17-5417-2023
Impact of the sampling procedure on the specific surface area of snow measurements with the IceCube
Martin, J., & Schneebeli, M. (2023). Impact of the sampling procedure on the specific surface area of snow measurements with the IceCube. Cryosphere, 17(4), 1723-1734. https://doi.org/10.5194/tc-17-1723-2023
Wind redistribution of snow impacts the Ka- and Ku-band radar signatures of Arctic sea ice
Nandan, V., Willatt, R., Mallett, R., Stroeve, J., Geldsetzer, T., Scharien, R., … Hoppmann, M. (2023). Wind redistribution of snow impacts the Ka- and Ku-band radar signatures of Arctic sea ice. Cryosphere, 17(6), 2211-2229. https://doi.org/10.5194/tc-17-2211-2023
Brief communication: Combining borehole temperature, borehole piezometer and cross-borehole electrical resistivity tomography measurements to investigate seasonal changes in ice-rich mountain permafrost
Phillips, M., Buchli, C., Weber, S., Boaga, J., Pavoni, M., & Bast, A. (2023). Brief communication: Combining borehole temperature, borehole piezometer and cross-borehole electrical resistivity tomography measurements to investigate seasonal changes in ice-rich mountain permafrost. Cryosphere, 17(2), 753-760. https://doi.org/10.5194/tc-17-753-2023
Predicting ocean-induced ice-shelf melt rates using deep learning
Rosier, S. H. R., Bull, C. Y. S., Woo, W. L., & Gudmundsson, G. H. (2023). Predicting ocean-induced ice-shelf melt rates using deep learning. Cryosphere, 17(2), 499-518. https://doi.org/10.5194/tc-17-499-2023
Constraining regional glacier reconstructions using past ice thickness of deglaciating areas - a case study in the European Alps
Sommer, C., Fürst, J. J., Huss, M., & Braun, M. H. (2023). Constraining regional glacier reconstructions using past ice thickness of deglaciating areas - a case study in the European Alps. Cryosphere, 17(6), 2285-2303. https://doi.org/10.5194/tc-17-2285-2023
An evaluation of a physics-based firn model and a semi-empirical firn model across the Greenland Ice Sheet (1980–2020)
Thompson-Munson, M., Wever, N., Stevens, C. M., Lenaerts, J. T. M., & Medley, B. (2023). An evaluation of a physics-based firn model and a semi-empirical firn model across the Greenland Ice Sheet (1980–2020). Cryosphere, 17(5), 2185-2209. https://doi.org/10.5194/tc-17-2185-2023
Brief communication: comparison of the performance of thermistors and digital temperature sensors in a mountain permafrost borehole
Widmer, L., Phillips, M., & Buchli, C. (2023). Brief communication: comparison of the performance of thermistors and digital temperature sensors in a mountain permafrost borehole. Cryosphere, 17(10), 4289-4295. https://doi.org/10.5194/tc-17-4289-2023
Wind conditions for snow cornice formation in a wind tunnel
Yu, H., Li, G., Walter, B., Lehning, M., Zhang, J., & Huang, N. (2023). Wind conditions for snow cornice formation in a wind tunnel. Cryosphere, 17(2), 639-951. https://doi.org/10.5194/tc-17-639-2023
Thinning and surface mass balance patterns of two neighbouring debris-covered glaciers in the southeastern Tibetan Plateau
Zhao, C., Yang, W., Miles, E., Westoby, M., Kneib, M., Wang, Y., … Pellicciotti, F. (2023). Thinning and surface mass balance patterns of two neighbouring debris-covered glaciers in the southeastern Tibetan Plateau. Cryosphere, 17(9), 3895-3913. https://doi.org/10.5194/tc-17-3895-2023
Homogeneity assessment of Swiss snow depth series: comparison of break detection capabilities of (semi-)automatic homogenization methods
Buchmann, M., Coll, J., Aschauer, J., Begert, M., Brönnimann, S., Chimani, B., … Marty, C. (2022). Homogeneity assessment of Swiss snow depth series: comparison of break detection capabilities of (semi-)automatic homogenization methods. Cryosphere, 16(6), 2147-2161. https://doi.org/10.5194/tc-16-2147-2022
GNSS signal-based snow water equivalent determination for different snowpack conditions along a steep elevation gradient
Capelli, A., Koch, F., Henkel, P., Lamm, M., Appel, F., Marty, C., & Schweizer, J. (2022). GNSS signal-based snow water equivalent determination for different snowpack conditions along a steep elevation gradient. Cryosphere, 16(2), 505-531. https://doi.org/10.5194/tc-16-505-2022
Propagating information from snow observations with CrocO ensemble data assimilation system: a 10-years case study over a snow depth observation network
Cluzet, B., Lafaysse, M., Deschamps-Berger, C., Vernay, M., & Dumont, M. (2022). Propagating information from snow observations with CrocO ensemble data assimilation system: a 10-years case study over a snow depth observation network. Cryosphere, 16(4), 1281-1298. https://doi.org/10.5194/tc-16-1281-2022
 

Pages