Active Filters

  • (-) Journal = Arctic, Antarctic, and Alpine Research
Search Results 1 - 19 of 19
  • RSS Feed
Select Page
Tree-ring δ<sup>18</sup>O from an Alpine catchment reveals changes in glacier stream water inputs between 1980 and 2010
Leonelli, G., Battipaglia, G., Cherubini, P., Saurer, M., Siegwolf, R. T. W., Maugeri, M., … Maggi, V. (2019). Tree-ring δ18O from an Alpine catchment reveals changes in glacier stream water inputs between 1980 and 2010. Arctic, Antarctic, and Alpine Research, 51(1), 250-264. https://doi.org/10.1080/15230430.2019.1623607
Xylem anatomical trait variability provides insight on the climate-growth relationship of <em>Betula nana</em> in western Greenland
Nielsen, S., von Arx, G., Damgaard, C. F., Abermann, J., Buchwal, A., Büntgen, U., … Normand, S. (2017). Xylem anatomical trait variability provides insight on the climate-growth relationship of Betula nana in western Greenland. Arctic, Antarctic, and Alpine Research, 49(3), 359-371. https://doi.org/10.1657/AAAR0016-041
Recent and intense dynamics in a formerly static Pyrenean treeline
Camarero, J. J., García-Ruiz, J. M., Sangüesa-Barreda, G., Galván, J. D., Alla, A. Q., Sanjuán, Y., … Gutiérrez, E. (2015). Recent and intense dynamics in a formerly static Pyrenean treeline. Arctic, Antarctic, and Alpine Research, 47(4), 773-783. https://doi.org/10.1657/AAAR0015-001
Timber logging in central Siberia is the main source for recent Arctic driftwood
Hellmann, L., Tegel, W., Kirdyanov, A. V., Eggertsson, Ó., Esper, J., Agafonov, L., … Büntgen, U. (2015). Timber logging in central Siberia is the main source for recent Arctic driftwood. Arctic, Antarctic, and Alpine Research, 47(3), 449-460. https://doi.org/10.1657/AAAR0014-063
Snow fungi-induced mortality of <em>Pinus cembra</em> at the alpine treeline: evidence from plantations
Barbeito, I., Brücker, R. L., Rixen, C., & Bebi, P. (2013). Snow fungi-induced mortality of Pinus cembra at the alpine treeline: evidence from plantations. Arctic, Antarctic, and Alpine Research, 45(4), 455-470. https://doi.org/10.1657/1938-4246-45.4.455
Sediment transport and bedrock erosion by wet snow avalanches in the Guggigraben, Matter Valley, Switzerland
Moore, J. R., Egloff, J., Nagelisen, J., Hunziker, M., Aerne, U., & Christen, M. (2013). Sediment transport and bedrock erosion by wet snow avalanches in the Guggigraben, Matter Valley, Switzerland. Arctic, Antarctic, and Alpine Research, 45(3), 350-362. https://doi.org/10.1657/1938-4246-45.3.350
Snow avalanches in forested terrain: influence of forest parameters, topography and avalanche characteristics on runout distance
Teich, M., Bartelt, P., Grêt-Regamey, A., & Bebi, P. (2012). Snow avalanches in forested terrain: influence of forest parameters, topography and avalanche characteristics on runout distance. Arctic, Antarctic, and Alpine Research, 44(4), 509-519. https://doi.org/10.1657/1938-4246-44.4.509
Non-stationary responses of tree-ring chronologies and glacier mass balance to climate in the European Alps
Leonelli, G., Pelfini, M., D'Arrigo, R., Haeberli, W., & Cherubini, P. (2011). Non-stationary responses of tree-ring chronologies and glacier mass balance to climate in the European Alps. Arctic, Antarctic, and Alpine Research, 43(1), 56-65. https://doi.org/10.1657/1938-4246-43.1.56
Blowing snow fluxes in the Cariboo Mountains of British Columbia, Canada
Déry, S. J., Clifton, A., MacLeold, S., & Beedle, M. J. (2010). Blowing snow fluxes in the Cariboo Mountains of British Columbia, Canada. Arctic, Antarctic, and Alpine Research, 42(2), 188-197. https://doi.org/10.1657/1938-4246-42.2.188
Altered snow density and chemistry change soil nitrogen mineralization and plant growth
Rixen, C., Freppaz, M., Stoeckli, V., Huovinen, C., Huovinen, K., & Wipf, S. (2008). Altered snow density and chemistry change soil nitrogen mineralization and plant growth. Arctic, Antarctic, and Alpine Research, 40(3), 568-575. https://doi.org/10.1657/1523-0430(07-044)[Rixen]2.0.Co;2
Effects of climate and land-use change on the establishment and growth of cembran pine (<em>Pinus cembra</em> L.) over the altitudinal treeline ecotone in the Central Swiss Alps
Vittoz, P., Rulence, B., Largey, T., & Freléchoux, F. (2008). Effects of climate and land-use change on the establishment and growth of cembran pine (Pinus cembra L.) over the altitudinal treeline ecotone in the Central Swiss Alps. Arctic, Antarctic, and Alpine Research, 40(1), 225-232. https://doi.org/10.1657/1523-0430(06-010)[Vittoz]2.0.Co;2
An evaluation of dendroecological indicators of snow avalanches in the Swiss Alps
Casteller, A., Stöckli, V., Villalba, R., & Mayer, A. C. (2007). An evaluation of dendroecological indicators of snow avalanches in the Swiss Alps. Arctic, Antarctic, and Alpine Research, 39(2), 218-228. https://doi.org/10.1657/1523-0430(2007)39[218:Aeodio]2.0.Co;2
Long-term impact of cattle grazing on subalpine forest development and efficiency of snow avalanche protection
Mayer, A. C., & Stöckli, V. (2005). Long-term impact of cattle grazing on subalpine forest development and efficiency of snow avalanche protection. Arctic, Antarctic, and Alpine Research, 37(4), 521-526. https://doi.org/10.1657/1523-0430(2005)037[0521:Liocgo]2.0.Co;2
400 years of debris-flow activity and triggering weather conditions: Ritigraben, Valais, Switzerland
Stoffel, M., Lièvre, I., Conus, D., Grichting, M., Raetzo, H., Gärtner, H. W., & Monbaron, M. (2005). 400 years of debris-flow activity and triggering weather conditions: Ritigraben, Valais, Switzerland. Arctic, Antarctic, and Alpine Research, 37(3), 387-395. https://doi.org/10.1657/1523-0430(2005)037[0387:Yodaat]2.0.Co;2
Ground temperatures under ski pistes with artificial and natural snow
Rixen, C., Haeberli, W., & Stoeckli, V. (2004). Ground temperatures under ski pistes with artificial and natural snow. Arctic, Antarctic, and Alpine Research, 36(4), 419-427. https://doi.org/10.1657/1523-0430(2004)036[0419:Gtuspw]2.0.Co;2
Snowmelt infiltration into alpine soils visualized by dye tracer technique
Stähli, M., Bayard, D., Wydler, H., & Flühler, H. (2004). Snowmelt infiltration into alpine soils visualized by dye tracer technique. Arctic, Antarctic, and Alpine Research, 36(1), 128-135. https://doi.org/10.1657/1523-0430(2004)036[0128:Siiasv]2.0.Co;2
Populations of Antarctic Hairgrass (<em>Deschampsia antarctica</em>) show low genetic diversity
Holderegger, R., Stehlik, I., Smith, R. I. L., & Abbott, R. J. (2003). Populations of Antarctic Hairgrass (Deschampsia antarctica) show low genetic diversity. Arctic, Antarctic, and Alpine Research, 35(2), 214-217. https://doi.org/10.1657/1523-0430(2003)035[0214:Poahda]2.0.Co;2
Extreme tree rings in spruce (<em>Picea abies</em> [L.] Karst.) and fir (<em>Abies alba</em> Mill.) stands in relation to climate, site, and spate in the southern French and Italian Alps
Rolland, C., Desplanque, C., Michalet, R., & Schweingruber, F. H. (2000). Extreme tree rings in spruce (Picea abies [L.] Karst.) and fir (Abies alba Mill.) stands in relation to climate, site, and spate in the southern French and Italian Alps. Arctic, Antarctic, and Alpine Research, 32(1), 1-13. https://doi.org/10.2307/1552404
The Multetta debris fan, eastern Swiss Alps: a 500-year debris flow chronology
Baumann, F., & Kaiser, K. F. (1999). The Multetta debris fan, eastern Swiss Alps: a 500-year debris flow chronology. Arctic, Antarctic, and Alpine Research, 31(2), 128-134. https://doi.org/10.2307/1552601