| Modelling GNSS-observed seasonal velocity changes of the Ross Ice Shelf, Antarctica, using the Ice-sheet and Sea-level System Model (ISSM)
Baldacchino, F., Golledge, N. R., Morlighem, M., Horgan, H., Alevropoulos-Borrill, A. V., Malyarenko, A., … Van Haastrecht, L. (2025). Modelling GNSS-observed seasonal velocity changes of the Ross Ice Shelf, Antarctica, using the Ice-sheet and Sea-level System Model (ISSM). Cryosphere, 19(1), 107-127. https://doi.org/10.5194/tc-19-107-2025 |
| The source, quantity, and spatial distribution of interfacial water during glide-snow avalanche release: experimental evidence from field monitoring
Fees, A., Lombardo, M., Van Herwijnen, A., Lehmann, P., & Schweizer, J. (2025). The source, quantity, and spatial distribution of interfacial water during glide-snow avalanche release: experimental evidence from field monitoring. Cryosphere, 19(3), 1453-1468. https://doi.org/10.5194/tc-19-1453-2025 |
| Extreme precipitation associated with atmospheric rivers over West Antarctic ice shelves: insights from kilometre-scale regional climate modelling
Gilbert, E., Pishniak, D., Torres, J. A., Orr, A., Maclennan, M., Wever, N., & Verro, K. (2025). Extreme precipitation associated with atmospheric rivers over West Antarctic ice shelves: insights from kilometre-scale regional climate modelling. Cryosphere, 19(2), 597-618. https://doi.org/10.5194/tc-19-597-2025 |
| Inferring the seasonality of sea ice floes in the Weddell Sea using ICESat-2
Gupta, M., Regan, H., Koo, Y., Chua, S. M. T., Li, X., & Heil, P. (2025). Inferring the seasonality of sea ice floes in the Weddell Sea using ICESat-2. Cryosphere, 19(3), 1241-1257. https://doi.org/10.5194/tc-19-1241-2025 |
| Pressurised water flow in fractured permafrost rocks revealed by borehole temperature, electrical resistivity tomography, and piezometric pressure
Offer, M., Weber, S., Krautblatter, M., Hartmeyer, I., & Keuschnig, M. (2025). Pressurised water flow in fractured permafrost rocks revealed by borehole temperature, electrical resistivity tomography, and piezometric pressure. Cryosphere, 19(1), 485-506. https://doi.org/10.5194/tc-19-485-2025 |
| A reconstruction of the ice thickness of the Antarctic Peninsula Ice Sheet north of 70° S
Shahateet, K., Fürst, J. J., Navarro, F., Seehaus, T., Farinotti, D., & Braun, M. (2025). A reconstruction of the ice thickness of the Antarctic Peninsula Ice Sheet north of 70° S. Cryosphere, 19(4), 1577-1597. https://doi.org/10.5194/tc-19-1577-2025 |
| A minimal machine-learning glacier mass balance model
Van Der Meer, M., Zekollari, H., Huss, M., Bolibar, J., Sjursen, K. H., & Farinotti, D. (2025). A minimal machine-learning glacier mass balance model. Cryosphere, 19(2), 805-826. https://doi.org/10.5194/tc-19-805-2025 |
| Spectral characteristics of seismic ambient vibrations reveal changes in the subglacial environment of Glacier de la Plaine Morte, Switzerland
Van Ginkel, J., Walter, F., Lindner, F., Hallo, M., Huss, M., & Fäh, D. (2025). Spectral characteristics of seismic ambient vibrations reveal changes in the subglacial environment of Glacier de la Plaine Morte, Switzerland. Cryosphere, 19(3), 1469-1490. https://doi.org/10.5194/tc-19-1469-2025 |
| Inter-model differences in 21st century glacier runoff for the world's major river basins
Wimberly, F., Ultee, L., Schuster, L., Huss, M., Rounce, D. R., Maussion, F., … Holmgren, E. (2025). Inter-model differences in 21st century glacier runoff for the world's major river basins. Cryosphere, 19(4), 1491-1511. https://doi.org/10.5194/tc-19-1491-2025 |
| Modelling subglacial fluvial sediment transport with a graph-based model, Graphical Subglacial Sediment Transport (GraphSSeT)
Aitken, A. R. A., Delaney, I., Pirot, G., & Werder, M. A. (2024). Modelling subglacial fluvial sediment transport with a graph-based model, Graphical Subglacial Sediment Transport (GraphSSeT). Cryosphere, 18(9), 4111-4136. https://doi.org/10.5194/tc-18-4111-2024 |
| Unlocking the potential of melting calorimetry: a field protocol for liquid water content measurement in snow
Barella, R., Bavay, M., Carletti, F., Ciapponi, N., Premier, V., & Marin, C. (2024). Unlocking the potential of melting calorimetry: a field protocol for liquid water content measurement in snow. Cryosphere, 18(11), 5323-5345. https://doi.org/10.5194/tc-18-5323-2024 |
| Short-term cooling, drying, and deceleration of an ice-rich rock glacier
Bast, A., Kenner, R., & Phillips, M. (2024). Short-term cooling, drying, and deceleration of an ice-rich rock glacier. Cryosphere, 18(7), 3141-3158. https://doi.org/10.5194/tc-18-3141-2024 |
| Brief communication: on the potential of seismic polarity reversal to identify a thin low-velocity layer above a high-velocity layer in ice-rich rock glaciers
Boaga, J., Pavoni, M., Bast, A., & Weber, S. (2024). Brief communication: on the potential of seismic polarity reversal to identify a thin low-velocity layer above a high-velocity layer in ice-rich rock glaciers. Cryosphere, 18(7), 3231-3236. https://doi.org/10.5194/tc-18-3231-2024 |
| Impact of intercepted and sub-canopy snow microstructure on snowpack response to rain-on-snow events under a boreal canopy
Bouchard, B., Nadeau, D. F., Domine, F., Wever, N., Michel, A., Lehning, M., & Isabelle, P. E. (2024). Impact of intercepted and sub-canopy snow microstructure on snowpack response to rain-on-snow events under a boreal canopy. Cryosphere, 18(6), 2783-2807. https://doi.org/10.5194/tc-18-2783-2024 |
| A rigorous approach to the specific surface area evolution in snow during temperature gradient metamorphism
Braun, A., Fourteau, K., & Löwe, H. (2024). A rigorous approach to the specific surface area evolution in snow during temperature gradient metamorphism. Cryosphere, 18(4), 1653-1668. https://doi.org/10.5194/tc-18-1653-2024 |
| Exploring how Sentinel-1 wet-snow maps can inform fully distributed physically based snowpack models
Cluzet, B., Magnusson, J., Quéno, L., Mazzotti, G., Mott, R., & Jonas, T. (2024). Exploring how Sentinel-1 wet-snow maps can inform fully distributed physically based snowpack models. Cryosphere, 18(12), 5753-5767. https://doi.org/10.5194/tc-18-5753-2024 |
| Microstructure-based simulations of the viscous densification of snow and firn
Fourteau, K., Freitag, J., Malinen, M., & Löwe, H. (2024). Microstructure-based simulations of the viscous densification of snow and firn. Cryosphere, 18(6), 2831-2846. https://doi.org/10.5194/tc-18-2831-2024 |
| Interactive snow avalanche segmentation from webcam imagery: results, potential, and limitations
Hafner, E. D., Kontogianni, T., Daudt, R. C., Oberson, L., Wegner, J. D., Schindler, K., & Bühler, Y. (2024). Interactive snow avalanche segmentation from webcam imagery: results, potential, and limitations. Cryosphere, 18(8), 3807-3823. https://doi.org/10.5194/tc-18-3807-2024 |
| Distributed surface mass balance of an avalanche-fed glacier
Kneib, M., Dehecq, A., Gilbert, A., Basset, A., Miles, E. S., Jouvet, G., … Six, D. (2024). Distributed surface mass balance of an avalanche-fed glacier. Cryosphere, 18(12), 5965-5983. https://doi.org/10.5194/tc-18-5965-2024 |
| Impact of climate change on snow avalanche activity in the Swiss Alps
Mayer, S., Hendrick, M., Michel, A., Richter, B., Schweizer, J., Wernli, H., & van Herwijnen, A. (2024). Impact of climate change on snow avalanche activity in the Swiss Alps. Cryosphere, 18(11), 5495-5517. https://doi.org/10.5194/tc-18-5495-2024 |