Active Filters

  • (-) Journal = Cryosphere
Search Results 1 - 20 of 88

Pages

  • CSV Spreadsheet
  • Excel Spreadsheet
  • RSS Feed
Select Page
Intercomparison of photogrammetric platforms for spatially continuous snow depth mapping
Eberhard, L. A., Sirguey, P., Miller, A., Marty, M., Schindler, K., Stoffel, A., & Bühler, Y. (2021). Intercomparison of photogrammetric platforms for spatially continuous snow depth mapping. Cryosphere, 15(1), 69-94. https://doi.org/10.5194/tc-15-69-2021
Glacier runoff variations since 1955 in the Maipo River basin, in the semiarid Andes of central Chile
Ayala, Á., Farías-Barahona, D., Huss, M., Pellicciotti, F., McPhee, J., & Farinotti, D. (2020). Glacier runoff variations since 1955 in the Maipo River basin, in the semiarid Andes of central Chile. Cryosphere, 14(6), 2005-2027. https://doi.org/10.5194/tc-14-2005-2020
Micromechanical modeling of snow failure
Bobillier, G., Bergfeld, B., Capelli, A., Dual, J., Gaume, J., van Herwijnen, A., & Schweizer, J. (2020). Micromechanical modeling of snow failure. Cryosphere, 14(1), 39-49. https://doi.org/10.5194/tc-14-39-2020
The RHOSSA campaign: multi-resolution monitoring of the seasonal evolution of the structure and mechanical stability of an alpine snowpack
Calonne, N., Richter, B., Löwe, H., Cetti, C., ter Schure, J., Van Herwijnen, A., … Schneebeli, M. (2020). The RHOSSA campaign: multi-resolution monitoring of the seasonal evolution of the structure and mechanical stability of an alpine snowpack. Cryosphere, 14(6), 1829-1848. https://doi.org/10.5194/tc-14-1829-2020
Snow depth mapping from stereo satellite imagery in mountainous terrain: evaluation using airborne laser-scanning data
Deschamps-Berger, C., Gascoin, S., Berthier, E., Deems, J., Gutmann, E., Dehecq, A., … Dumont, M. (2020). Snow depth mapping from stereo satellite imagery in mountainous terrain: evaluation using airborne laser-scanning data. Cryosphere, 14(9), 2925-2940. https://doi.org/10.5194/tc-14-2925-2020
Snow cover duration trends observed at sites and predicted by multiple models
Essery, R., Kim, H., Wang, L., Bartlett, P., Boone, A., Brutel-Vuilmet, C., … Yuan, H. (2020). Snow cover duration trends observed at sites and predicted by multiple models. Cryosphere, 14(12), 4687-4698. https://doi.org/10.5194/tc-14-4687-2020
Relating regional and point measurements of accumulation in southwest Greenland
Heilig, A., Eisen, O., Schneebeli, M., MacFerrin, M., Stevens, C. M., Vandecrux, B., & Steffen, K. (2020). Relating regional and point measurements of accumulation in southwest Greenland. Cryosphere, 14(1), 385-402. https://doi.org/10.5194/tc-14-385-2020
Mapping the age of ice of Gauligletscher combining surface radionuclide contamination and ice flow modeling
Jouvet, G., Röllin, S., Sahli, H., Corcho, J., Gnägi, L., Compagno, L., … Funk, M. (2020). Mapping the age of ice of Gauligletscher combining surface radionuclide contamination and ice flow modeling. Cryosphere, 14(11), 4233-4251. https://doi.org/10.5194/tc-14-4233-2020
Modeling the evolution of the structural anisotropy of snow
Leinss, S., Löwe, H., Proksch, M., & Kontu, A. (2020). Modeling the evolution of the structural anisotropy of snow. Cryosphere, 14(1), 51-75. https://doi.org/10.5194/tc-14-51-2020
The mechanical origin of snow avalanche dynamics and flow regime transitions
Li, X., Sovilla, B., Jiang, C., & Gaume, J. (2020). The mechanical origin of snow avalanche dynamics and flow regime transitions. Cryosphere, 14(10), 3381-3398. https://doi.org/10.5194/tc-14-3381-2020
Deep ice layer formation in an alpine snowpack: monitoring and modeling
Quéno, L., Fierz, C., van Herwijnen, A., Longridge, D., & Wever, N. (2020). Deep ice layer formation in an alpine snowpack: monitoring and modeling. Cryosphere, 14(10), 3449-3464. https://doi.org/10.5194/tc-14-3449-2020
On the relation between avalanche occurrence and avalanche danger level
Schweizer, J., Mitterer, C., Techel, F., Stoffel, A., & Reuter, B. (2020). On the relation between avalanche occurrence and avalanche danger level. Cryosphere, 14(2), 737-750. https://doi.org/10.5194/tc-14-737-2020
Surface-based Ku- and Ka-band polarimetric radar for sea ice studies
Stroeve, J., Nandan, V., Willatt, R., Tonboe, R., Hendricks, S., Ricker, R., … Tsamados, M. (2020). Surface-based Ku- and Ka-band polarimetric radar for sea ice studies. Cryosphere, 14(12), 4405-4426. https://doi.org/10.5194/tc-14-4405-2020
On the importance of snowpack stability, the frequency distribution of snowpack stability, and avalanche size in assessing the avalanche danger level
Techel, F., Müller, K., & Schweizer, J. (2020). On the importance of snowpack stability, the frequency distribution of snowpack stability, and avalanche size in assessing the avalanche danger level. Cryosphere, 14(10), 3503-3521. https://doi.org/10.5194/tc-14-3503-2020
Radar measurements of blowing snow off a mountain ridge
Walter, B., Huwald, H., Gehring, J., Bühler, Y., & Lehning, M. (2020). Radar measurements of blowing snow off a mountain ridge. Cryosphere, 14(6), 1779-1794. https://doi.org/10.5194/tc-14-1779-2020
Brief communication: ad hoc estimation of glacier contributions to sea-level rise from the latest glaciological observations
Zemp, M., Huss, M., Eckert, N., Thibert, E., Paul, F., Nussbaumer, S. U., & Gärtner-Roer, I. (2020). Brief communication: ad hoc estimation of glacier contributions to sea-level rise from the latest glaciological observations. Cryosphere, 14(3), 1043-1050. https://doi.org/10.5194/tc-14-1043-2020
Where are the avalanches? Rapid SPOT6 satellite data acquisition to map an extreme avalanche period over the Swiss Alps
Bühler, Y., Hafner, E. D., Zweifel, B., Zesiger, M., & Heisig, H. (2019). Where are the avalanches? Rapid SPOT6 satellite data acquisition to map an extreme avalanche period over the Swiss Alps. Cryosphere, 13(12), 3225-3238. https://doi.org/10.5194/tc-13-3225-2019
Multi-tracer study of gas trapping in an East Antarctic ice core
Fourteau, K., Martinerie, P., Faïn, X., Schaller, C. F., Tuckwell, R. J., Löwe, H., … Lipenkov, V. Y. (2019). Multi-tracer study of gas trapping in an East Antarctic ice core. Cryosphere, 13(12), 3383-3403. https://doi.org/10.5194/tc-13-3383-2019
Distinguishing ice-rich and ice-poor permafrost to map ground temperatures and ground ice occurrence in the Swiss Alps
Kenner, R., Noetzli, J., Hoelzle, M., Raetzo, H., & Phillips, M. (2019). Distinguishing ice-rich and ice-poor permafrost to map ground temperatures and ground ice occurrence in the Swiss Alps. Cryosphere, 13(7), 1925-1941. https://doi.org/10.5194/tc-13-1925-2019
Avalanches and micrometeorology driving mass and energy balance of the lowest perennial ice field of the Alps: a case study
Mott, R., Wolf, A., Kehl, M., Kunstmann, H., Warscher, M., & Grünewald, T. (2019). Avalanches and micrometeorology driving mass and energy balance of the lowest perennial ice field of the Alps: a case study. Cryosphere, 13(4), 1247-1265. https://doi.org/10.5194/tc-13-1247-2019
 

Pages