Active Filters

  • (-) Journal = Cryosphere
Search Results 1 - 20 of 175

Pages

  • RSS Feed
Select Page
Modelling GNSS-observed seasonal velocity changes of the Ross Ice Shelf, Antarctica, using the Ice-sheet and Sea-level System Model (ISSM)
Baldacchino, F., Golledge, N. R., Morlighem, M., Horgan, H., Alevropoulos-Borrill, A. V., Malyarenko, A., … Van Haastrecht, L. (2025). Modelling GNSS-observed seasonal velocity changes of the Ross Ice Shelf, Antarctica, using the Ice-sheet and Sea-level System Model (ISSM). Cryosphere, 19(1), 107-127. https://doi.org/10.5194/tc-19-107-2025
The source, quantity, and spatial distribution of interfacial water during glide-snow avalanche release: experimental evidence from field monitoring
Fees, A., Lombardo, M., Van Herwijnen, A., Lehmann, P., & Schweizer, J. (2025). The source, quantity, and spatial distribution of interfacial water during glide-snow avalanche release: experimental evidence from field monitoring. Cryosphere, 19(3), 1453-1468. https://doi.org/10.5194/tc-19-1453-2025
Extreme precipitation associated with atmospheric rivers over West Antarctic ice shelves: insights from kilometre-scale regional climate modelling
Gilbert, E., Pishniak, D., Torres, J. A., Orr, A., Maclennan, M., Wever, N., & Verro, K. (2025). Extreme precipitation associated with atmospheric rivers over West Antarctic ice shelves: insights from kilometre-scale regional climate modelling. Cryosphere, 19(2), 597-618. https://doi.org/10.5194/tc-19-597-2025
Inferring the seasonality of sea ice floes in the Weddell Sea using ICESat-2
Gupta, M., Regan, H., Koo, Y., Chua, S. M. T., Li, X., & Heil, P. (2025). Inferring the seasonality of sea ice floes in the Weddell Sea using ICESat-2. Cryosphere, 19(3), 1241-1257. https://doi.org/10.5194/tc-19-1241-2025
Pressurised water flow in fractured permafrost rocks revealed by borehole temperature, electrical resistivity tomography, and piezometric pressure
Offer, M., Weber, S., Krautblatter, M., Hartmeyer, I., & Keuschnig, M. (2025). Pressurised water flow in fractured permafrost rocks revealed by borehole temperature, electrical resistivity tomography, and piezometric pressure. Cryosphere, 19(1), 485-506. https://doi.org/10.5194/tc-19-485-2025
A reconstruction of the ice thickness of the Antarctic Peninsula Ice Sheet north of 70° S
Shahateet, K., Fürst, J. J., Navarro, F., Seehaus, T., Farinotti, D., & Braun, M. (2025). A reconstruction of the ice thickness of the Antarctic Peninsula Ice Sheet north of 70° S. Cryosphere, 19(4), 1577-1597. https://doi.org/10.5194/tc-19-1577-2025
A minimal machine-learning glacier mass balance model
Van Der Meer, M., Zekollari, H., Huss, M., Bolibar, J., Sjursen, K. H., & Farinotti, D. (2025). A minimal machine-learning glacier mass balance model. Cryosphere, 19(2), 805-826. https://doi.org/10.5194/tc-19-805-2025
Spectral characteristics of seismic ambient vibrations reveal changes in the subglacial environment of Glacier de la Plaine Morte, Switzerland
Van Ginkel, J., Walter, F., Lindner, F., Hallo, M., Huss, M., & Fäh, D. (2025). Spectral characteristics of seismic ambient vibrations reveal changes in the subglacial environment of Glacier de la Plaine Morte, Switzerland. Cryosphere, 19(3), 1469-1490. https://doi.org/10.5194/tc-19-1469-2025
Inter-model differences in 21st century glacier runoff for the world's major river basins
Wimberly, F., Ultee, L., Schuster, L., Huss, M., Rounce, D. R., Maussion, F., … Holmgren, E. (2025). Inter-model differences in 21st century glacier runoff for the world's major river basins. Cryosphere, 19(4), 1491-1511. https://doi.org/10.5194/tc-19-1491-2025
Modelling subglacial fluvial sediment transport with a graph-based model, Graphical Subglacial Sediment Transport (GraphSSeT)
Aitken, A. R. A., Delaney, I., Pirot, G., & Werder, M. A. (2024). Modelling subglacial fluvial sediment transport with a graph-based model, Graphical Subglacial Sediment Transport (GraphSSeT). Cryosphere, 18(9), 4111-4136. https://doi.org/10.5194/tc-18-4111-2024
Unlocking the potential of melting calorimetry: a field protocol for liquid water content measurement in snow
Barella, R., Bavay, M., Carletti, F., Ciapponi, N., Premier, V., & Marin, C. (2024). Unlocking the potential of melting calorimetry: a field protocol for liquid water content measurement in snow. Cryosphere, 18(11), 5323-5345. https://doi.org/10.5194/tc-18-5323-2024
Short-term cooling, drying, and deceleration of an ice-rich rock glacier
Bast, A., Kenner, R., & Phillips, M. (2024). Short-term cooling, drying, and deceleration of an ice-rich rock glacier. Cryosphere, 18(7), 3141-3158. https://doi.org/10.5194/tc-18-3141-2024
Brief communication: on the potential of seismic polarity reversal to identify a thin low-velocity layer above a high-velocity layer in ice-rich rock glaciers
Boaga, J., Pavoni, M., Bast, A., & Weber, S. (2024). Brief communication: on the potential of seismic polarity reversal to identify a thin low-velocity layer above a high-velocity layer in ice-rich rock glaciers. Cryosphere, 18(7), 3231-3236. https://doi.org/10.5194/tc-18-3231-2024
Impact of intercepted and sub-canopy snow microstructure on snowpack response to rain-on-snow events under a boreal canopy
Bouchard, B., Nadeau, D. F., Domine, F., Wever, N., Michel, A., Lehning, M., & Isabelle, P. E. (2024). Impact of intercepted and sub-canopy snow microstructure on snowpack response to rain-on-snow events under a boreal canopy. Cryosphere, 18(6), 2783-2807. https://doi.org/10.5194/tc-18-2783-2024
A rigorous approach to the specific surface area evolution in snow during temperature gradient metamorphism
Braun, A., Fourteau, K., & Löwe, H. (2024). A rigorous approach to the specific surface area evolution in snow during temperature gradient metamorphism. Cryosphere, 18(4), 1653-1668. https://doi.org/10.5194/tc-18-1653-2024
Exploring how Sentinel-1 wet-snow maps can inform fully distributed physically based snowpack models
Cluzet, B., Magnusson, J., Quéno, L., Mazzotti, G., Mott, R., & Jonas, T. (2024). Exploring how Sentinel-1 wet-snow maps can inform fully distributed physically based snowpack models. Cryosphere, 18(12), 5753-5767. https://doi.org/10.5194/tc-18-5753-2024
Microstructure-based simulations of the viscous densification of snow and firn
Fourteau, K., Freitag, J., Malinen, M., & Löwe, H. (2024). Microstructure-based simulations of the viscous densification of snow and firn. Cryosphere, 18(6), 2831-2846. https://doi.org/10.5194/tc-18-2831-2024
Interactive snow avalanche segmentation from webcam imagery: results, potential, and limitations
Hafner, E. D., Kontogianni, T., Daudt, R. C., Oberson, L., Wegner, J. D., Schindler, K., & Bühler, Y. (2024). Interactive snow avalanche segmentation from webcam imagery: results, potential, and limitations. Cryosphere, 18(8), 3807-3823. https://doi.org/10.5194/tc-18-3807-2024
Distributed surface mass balance of an avalanche-fed glacier
Kneib, M., Dehecq, A., Gilbert, A., Basset, A., Miles, E. S., Jouvet, G., … Six, D. (2024). Distributed surface mass balance of an avalanche-fed glacier. Cryosphere, 18(12), 5965-5983. https://doi.org/10.5194/tc-18-5965-2024
Impact of climate change on snow avalanche activity in the Swiss Alps
Mayer, S., Hendrick, M., Michel, A., Richter, B., Schweizer, J., Wernli, H., & van Herwijnen, A. (2024). Impact of climate change on snow avalanche activity in the Swiss Alps. Cryosphere, 18(11), 5495-5517. https://doi.org/10.5194/tc-18-5495-2024
 

Pages