Active Filters

  • (-) Journal = Cryosphere
  • (-) Funding (EC, SNSF) ≠ Structure-chemistry interaction during snow metamorphism
Search Results 1 - 20 of 142

Pages

  • RSS Feed
Select Page
Modeling snowpack dynamics and surface energy budget in boreal and subarctic peatlands and forests
Nousu, J. P., Lafaysse, M., Mazzotti, G., Ala-Aho, P., Marttila, H., Cluzet, B., … Launiainen, S. (2024). Modeling snowpack dynamics and surface energy budget in boreal and subarctic peatlands and forests. Cryosphere, 18(1), 231-263. https://doi.org/10.5194/tc-18-231-2024
Everest South Col Glacier did not thin during the period 1984-2017
Brun, F., King, O., Réveillet, M., Amory, C., Planchot, A., Berthier, E., … Wagnon, P. (2023). Everest South Col Glacier did not thin during the period 1984-2017. Cryosphere, 17(8), 3251-3268. https://doi.org/10.5194/tc-17-3251-2023
The benefits of homogenising snow depth series - impacts on decadal trends and extremes for Switzerland
Buchmann, M., Resch, G., Begert, M., Brönnimann, S., Chimani, B., Schöner, W., & Marty, C. (2023). The benefits of homogenising snow depth series - impacts on decadal trends and extremes for Switzerland. Cryosphere, 17(2), 653-671. https://doi.org/10.5194/tc-17-653-2023
Spatially continuous snow depth mapping by aeroplane photogrammetry for annual peak of winter from 2017 to 2021 in open areas
Bührle, L. J., Marty, M., Eberhard, L. A., Stoffel, A., Hafner, E. D., & Bühler, Y. (2023). Spatially continuous snow depth mapping by aeroplane photogrammetry for annual peak of winter from 2017 to 2021 in open areas. Cryosphere, 17(8), 3383-3408. https://doi.org/10.5194/tc-17-3383-2023
European heat waves 2022: contribution to extreme glacier melt in Switzerland inferred from automated ablation readings
Cremona, A., Huss, M., Landmann, J. M., Borner, J., & Farinotti, D. (2023). European heat waves 2022: contribution to extreme glacier melt in Switzerland inferred from automated ablation readings. Cryosphere, 17(5), 1895-1912. https://doi.org/10.5194/tc-17-1895-2023
Spatio-temporal reconstruction of winter glacier mass balance in the Alps, Scandinavia, Central Asia and western Canada (1981-2019) using climate reanalyses and machine learning
Guidicelli, M., Huss, M., Gabella, M., & Salzmann, N. (2023). Spatio-temporal reconstruction of winter glacier mass balance in the Alps, Scandinavia, Central Asia and western Canada (1981-2019) using climate reanalyses and machine learning. Cryosphere, 17(2), 977-1002. https://doi.org/10.5194/tc-17-977-2023
Monitoring snow water equivalent using the phase of RFID signals
Le Breton, M., Larose, É., Baillet, L., Lejeune, Y., & van Herwijnen, A. (2023). Monitoring snow water equivalent using the phase of RFID signals. Cryosphere, 17(8), 3137-3156. https://doi.org/10.5194/tc-17-3137-2023
Greenland and Canadian Arctic ice temperature profiles database
Løkkegaard, A., Mankoff, K. D., Zdanowicz, C., Clow, G. D., Lüthi, M. P., Doyle, S. H., … Colgan, W. T. (2023). Greenland and Canadian Arctic ice temperature profiles database. Cryosphere, 17(9), 3829-3845. https://doi.org/10.5194/tc-17-3829-2023
Temporospatial variability of snow's thermal conductivity on Arctic sea ice
MacFarlane, A. R., Löwe, H., Gimenes, L., Wagner, D. N., Dadic, R., Ottersberg, R., … Schneebeli, M. (2023). Temporospatial variability of snow's thermal conductivity on Arctic sea ice. Cryosphere, 17(12), 5417-5434. https://doi.org/10.5194/tc-17-5417-2023
Impact of the sampling procedure on the specific surface area of snow measurements with the IceCube
Martin, J., & Schneebeli, M. (2023). Impact of the sampling procedure on the specific surface area of snow measurements with the IceCube. Cryosphere, 17(4), 1723-1734. https://doi.org/10.5194/tc-17-1723-2023
Wind redistribution of snow impacts the Ka- and Ku-band radar signatures of Arctic sea ice
Nandan, V., Willatt, R., Mallett, R., Stroeve, J., Geldsetzer, T., Scharien, R., … Hoppmann, M. (2023). Wind redistribution of snow impacts the Ka- and Ku-band radar signatures of Arctic sea ice. Cryosphere, 17(6), 2211-2229. https://doi.org/10.5194/tc-17-2211-2023
Brief communication: Combining borehole temperature, borehole piezometer and cross-borehole electrical resistivity tomography measurements to investigate seasonal changes in ice-rich mountain permafrost
Phillips, M., Buchli, C., Weber, S., Boaga, J., Pavoni, M., & Bast, A. (2023). Brief communication: Combining borehole temperature, borehole piezometer and cross-borehole electrical resistivity tomography measurements to investigate seasonal changes in ice-rich mountain permafrost. Cryosphere, 17(2), 753-760. https://doi.org/10.5194/tc-17-753-2023
Predicting ocean-induced ice-shelf melt rates using deep learning
Rosier, S. H. R., Bull, C. Y. S., Woo, W. L., & Gudmundsson, G. H. (2023). Predicting ocean-induced ice-shelf melt rates using deep learning. Cryosphere, 17(2), 499-518. https://doi.org/10.5194/tc-17-499-2023
Constraining regional glacier reconstructions using past ice thickness of deglaciating areas - a case study in the European Alps
Sommer, C., Fürst, J. J., Huss, M., & Braun, M. H. (2023). Constraining regional glacier reconstructions using past ice thickness of deglaciating areas - a case study in the European Alps. Cryosphere, 17(6), 2285-2303. https://doi.org/10.5194/tc-17-2285-2023
An evaluation of a physics-based firn model and a semi-empirical firn model across the Greenland Ice Sheet (1980–2020)
Thompson-Munson, M., Wever, N., Stevens, C. M., Lenaerts, J. T. M., & Medley, B. (2023). An evaluation of a physics-based firn model and a semi-empirical firn model across the Greenland Ice Sheet (1980–2020). Cryosphere, 17(5), 2185-2209. https://doi.org/10.5194/tc-17-2185-2023
Brief communication: comparison of the performance of thermistors and digital temperature sensors in a mountain permafrost borehole
Widmer, L., Phillips, M., & Buchli, C. (2023). Brief communication: comparison of the performance of thermistors and digital temperature sensors in a mountain permafrost borehole. Cryosphere, 17(10), 4289-4295. https://doi.org/10.5194/tc-17-4289-2023
Wind conditions for snow cornice formation in a wind tunnel
Yu, H., Li, G., Walter, B., Lehning, M., Zhang, J., & Huang, N. (2023). Wind conditions for snow cornice formation in a wind tunnel. Cryosphere, 17(2), 639-951. https://doi.org/10.5194/tc-17-639-2023
Thinning and surface mass balance patterns of two neighbouring debris-covered glaciers in the southeastern Tibetan Plateau
Zhao, C., Yang, W., Miles, E., Westoby, M., Kneib, M., Wang, Y., … Pellicciotti, F. (2023). Thinning and surface mass balance patterns of two neighbouring debris-covered glaciers in the southeastern Tibetan Plateau. Cryosphere, 17(9), 3895-3913. https://doi.org/10.5194/tc-17-3895-2023
Homogeneity assessment of Swiss snow depth series: comparison of break detection capabilities of (semi-)automatic homogenization methods
Buchmann, M., Coll, J., Aschauer, J., Begert, M., Brönnimann, S., Chimani, B., … Marty, C. (2022). Homogeneity assessment of Swiss snow depth series: comparison of break detection capabilities of (semi-)automatic homogenization methods. Cryosphere, 16(6), 2147-2161. https://doi.org/10.5194/tc-16-2147-2022
GNSS signal-based snow water equivalent determination for different snowpack conditions along a steep elevation gradient
Capelli, A., Koch, F., Henkel, P., Lamm, M., Appel, F., Marty, C., & Schweizer, J. (2022). GNSS signal-based snow water equivalent determination for different snowpack conditions along a steep elevation gradient. Cryosphere, 16(2), 505-531. https://doi.org/10.5194/tc-16-505-2022
 

Pages