Active Filters

  • (-) Journal = Geoscientific Model Development
Search Results 1 - 20 of 20
  • CSV Spreadsheet
  • Excel Spreadsheet
  • RSS Feed
Select Page
Modelling thermomechanical ice deformation using an implicit pseudo-transient method (FastICE v1.0) based on graphical processing units (GPUs)
Räss, L., Licul, A., Herman, F., Podladchikov, Y. Y., & Suckale, J. (2020). Modelling thermomechanical ice deformation using an implicit pseudo-transient method (FastICE v1.0) based on graphical processing units (GPUs). Geoscientific Model Development, 13(3), 955-976. https://doi.org/10.5194/gmd-13-955-2020
FORests and HYdrology under Climate Change in Switzerland v1.0: a spatially distributed model combining hydrology and forest dynamics
Speich, M. J. R., Zappa, M., Scherstjanoi, M., & Lischke, H. (2020). FORests and HYdrology under Climate Change in Switzerland v1.0: a spatially distributed model combining hydrology and forest dynamics. Geoscientific Model Development, 13(2), 537-564. https://doi.org/10.5194/gmd-13-537-2020
Version 1 of a sea ice module for the physics-based, detailed, multi-layer SNOWPACK model
Wever, N., Rossmann, L., Maaß, N., Leonard, K. C., Kaleschke, L., Nicolaus, M., & Lehning, M. (2020). Version 1 of a sea ice module for the physics-based, detailed, multi-layer SNOWPACK model. Geoscientific Model Development, 13(1), 99-119. https://doi.org/10.5194/gmd-13-99-2020
LPJ-GM 1.0: simulating migration efficiently in a dynamic vegetation model
Lehsten, V., Mischurow, M., Lindström, E., Lehsten, D., & Lischke, H. (2019). LPJ-GM 1.0: simulating migration efficiently in a dynamic vegetation model. Geoscientific Model Development, 12(3), 893-908. https://doi.org/10.5194/gmd-12-893-2019
The open global glacier model (OGGM) v1.1
Maussion, F., Butenko, A., Champollion, N., Dusch, M., Eis, J., Fourteau, K., … Marzeion, B. (2019). The open global glacier model (OGGM) v1.1. Geoscientific Model Development, 12(3), 909-931. https://doi.org/10.5194/gmd-12-909-2019
ESM-SnowMIP: assessing snow models and quantifying snow-related climate feedbacks
Krinner, G., Derksen, C., Essery, R., Flanner, M., Hagemann, S., Clark, M., … Zhu, D. (2018). ESM-SnowMIP: assessing snow models and quantifying snow-related climate feedbacks. Geoscientific Model Development, 11(12), 5027-5049. https://doi.org/10.5194/gmd-11-5027-2018
SMRT: an active-passive microwave radiative transfer model for snow with multiple microstructure and scattering formulations (v1.0)
Picard, G., Sandells, M., & Löwe, H. (2018). SMRT: an active-passive microwave radiative transfer model for snow with multiple microstructure and scattering formulations (v1.0). Geoscientific Model Development, 11(7), 2763-2788. https://doi.org/10.5194/gmd-11-2763-2018
Evaluating the effect of alternative carbon allocation schemes in a land surface model (CLM4.5) on carbon fluxes, pools, and turnover in temperate forests
Montané, F., Fox, A. M., Arellano, A. F., MacBean, N., Ross Alexander, M., Dye, A., … Moore, D. J. P. (2017). Evaluating the effect of alternative carbon allocation schemes in a land surface model (CLM4.5) on carbon fluxes, pools, and turnover in temperate forests. Geoscientific Model Development, 10(9), 3499-3517. https://doi.org/10.5194/gmd-10-3499-2017
DebrisInterMixing-2.3: a finite volume solver for three-dimensional debris-flow simulations with two calibration parameters – part 2: model validation with experiments
von Boetticher, A., Turowski, J. M., McArdell, B. W., Rickenmann, D., Hürlimann, M., Scheidl, C., & Kirchner, J. W. (2017). DebrisInterMixing-2.3: a finite volume solver for three-dimensional debris-flow simulations with two calibration parameters – part 2: model validation with experiments. Geoscientific Model Development, 10(11), 3963-3978. https://doi.org/10.5194/gmd-10-3963-2017
StreamFlow 1.0: an extension to the spatially distributed snow model Alpine3D for hydrological modelling and deterministic stream temperature prediction
Gallice, A., Bavay, M., Brauchli, T., Comola, F., Lehning, M., & Huwald, H. (2016). StreamFlow 1.0: an extension to the spatially distributed snow model Alpine3D for hydrological modelling and deterministic stream temperature prediction. Geoscientific Model Development, 9(12), 4491-4519. https://doi.org/10.5194/gmd-9-4491-2016
DebrisInterMixing-2.3: a finite volume solver for three-dimensional debris-flow simulations with two calibration parameters – part 1: model description
von Boetticher, A., Turowski, J. M., McArdell, B. W., Rickenmann, D., & Kirchner, J. W. (2016). DebrisInterMixing-2.3: a finite volume solver for three-dimensional debris-flow simulations with two calibration parameters – part 1: model description. Geoscientific Model Development, 9(9), 2909-2923. https://doi.org/10.5194/gmd-9-2909-2016
A two-layer canopy model with thermal inertia for an improved snowpack energy balance below needleleaf forest (model SNOWPACK, version 3.2.1, revision 741)
Gouttevin, I., Lehning, M., Jonas, T., Gustafsson, D., & Mölder, M. (2015). A two-layer canopy model with thermal inertia for an improved snowpack energy balance below needleleaf forest (model SNOWPACK, version 3.2.1, revision 741). Geoscientific Model Development, 8(8), 2379-2398. https://doi.org/10.5194/gmd-8-2379-2015
Upscaling with the dynamic two-layer classification concept (D2C): TreeMig-2L, an efficient implementation of the forest-landscape model TreeMig
Nabel, J. E. M. S. (2015). Upscaling with the dynamic two-layer classification concept (D2C): TreeMig-2L, an efficient implementation of the forest-landscape model TreeMig. Geoscientific Model Development, 8(11), 3563-3577. https://doi.org/10.5194/gmd-8-3563-2015
MEMLS3&a: Microwave Emission Model of Layered Snowpacks adapted to include backscattering
Proksch, M., Mätzler, C., Wiesmann, A., Lemmetyinen, J., Schwank, M., Löwe, H., & Schneebeli, M. (2015). MEMLS3&a: Microwave Emission Model of Layered Snowpacks adapted to include backscattering. Geoscientific Model Development, 8(8), 2611-2626. https://doi.org/10.5194/gmd-8-2611-2015
MeteoIO 2.4.2: a preprocessing library for meteorological data
Bavay, M., & Egger, T. (2014). MeteoIO 2.4.2: a preprocessing library for meteorological data. Geoscientific Model Development, 7(6), 3135-3151. https://doi.org/10.5194/gmd-7-3135-2014
Estimating soil organic carbon stocks of Swiss forest soils by robust external-drift kriging
Nussbaum, M., Papritz, A., Baltensweiler, A., & Walthert, L. (2014). Estimating soil organic carbon stocks of Swiss forest soils by robust external-drift kriging. Geoscientific Model Development, 7(3), 1197-1210. https://doi.org/10.5194/gmd-7-1197-2014
Application of a computationally efficient method to approximate gap model results with a probabilistic approach
Scherstjanoi, M., Kaplan, J. O., & Lischke, H. (2014). Application of a computationally efficient method to approximate gap model results with a probabilistic approach. Geoscientific Model Development, 7(4), 1543-1571. https://doi.org/10.5194/gmd-7-1543-2014
GAPPARD: a computationally efficient method of approximating gap-scale disturbance in vegetation models
Scherstjanoi, M., Kaplan, J. O., Thürig, E., & Lischke, H. (2013). GAPPARD: a computationally efficient method of approximating gap-scale disturbance in vegetation models. Geoscientific Model Development, 6(5), 1517-1542. https://doi.org/10.5194/gmd-6-1517-2013
Present state of global wetland extent and wetland methane modelling: methodology of a model inter-comparison project (WETCHIMP)
Wania, R., Melton, J. R., Hodson, E. L., Poulter, B., Ringeval, B., Spahni, R., … Kaplan, J. O. (2013). Present state of global wetland extent and wetland methane modelling: methodology of a model inter-comparison project (WETCHIMP). Geoscientific Model Development, 6(3), 617-641. https://doi.org/10.5194/gmd-6-617-2013
Plant functional type mapping for earth system models
Poulter, B., Ciais, P., Hodson, E., Lischke, H., Maignan, F., Plummer, S., & Zimmermann, N. E. (2011). Plant functional type mapping for earth system models. Geoscientific Model Development, 4(4), 993-1010. https://doi.org/10.5194/gmd-4-993-2011