Active Filters

  • (-) Journal = Global Change Biology
  • (-) WSL Research Units ≠ Land Change Science
  • (-) WSL Research Units = WSL
Search Results 1 - 9 of 9
  • RSS Feed
Select Page
High nitrogen deposition alters the decomposition of bog plant litter and reduces carbon accumulation
Bragazza, L., Buttler, A., Habermacher, J., Brancaleoni, L., Gerdol, R., Fritze, H., … Johnson, D. (2012). High nitrogen deposition alters the decomposition of bog plant litter and reduces carbon accumulation. Global Change Biology, 18(3), 1163-1172. https://doi.org/10.1111/j.1365-2486.2011.02585.x
Nitrogen addition alters mineralization dynamics of <sup>13</sup>C-depleted leaf and twig litter and reduces leaching of older DOC from mineral soil
Hagedorn, F., Kammer, A., Schmidt, M. W. I., & Goodale, C. L. (2012). Nitrogen addition alters mineralization dynamics of 13C-depleted leaf and twig litter and reduces leaching of older DOC from mineral soil. Global Change Biology, 18(4), 1412-1427. https://doi.org/10.1111/j.1365-2486.2011.02603.x
Increased nitrate availability in the soil of a mixed mature temperate forest subjected to elevated CO<SUB>2</SUB> concentration (canopy FACE)
Schleppi, P., Bucher-Wallin, I., Hagedorn, F., & Körner, C. (2012). Increased nitrate availability in the soil of a mixed mature temperate forest subjected to elevated CO2 concentration (canopy FACE). Global Change Biology, 18(2), 757-768. https://doi.org/10.1111/j.1365-2486.2011.02559.x
Reduced early growing season freezing resistance in alpine treeline plants under elevated atmospheric CO<SUB>2</SUB>
Martin, M., Gavazov, K., Körner, C., Hättenschwiler, S., & Rixen, C. (2010). Reduced early growing season freezing resistance in alpine treeline plants under elevated atmospheric CO2. Global Change Biology, 16(3), 1057-1070. https://doi.org/10.1111/j.1365-2486.2009.01987.x
Treeline shifts in the Ural mountains affect soil organic matter dynamics
Kammer, A., Hagedorn, F., Shevchenko, I., Leifeld, J., Guggenberger, G., Goryacheva, T., … Moiseev, P. (2009). Treeline shifts in the Ural mountains affect soil organic matter dynamics. Global Change Biology, 15(6), 1570-1583. https://doi.org/10.1111/j.1365-2486.2009.01856.x
Immobilization, stabilization and remobilization of nitrogen in forest soils at elevated CO&lt;sub&gt;2&lt;/sub&gt;: a &lt;sup&gt;15&lt;/sup&gt;N and &lt;sup&gt;13&lt;/sup&gt;C tracer study
Hagedorn, F., Maurer, S., Bucher, J. B., & Siegwolf, R. T. W. (2005). Immobilization, stabilization and remobilization of nitrogen in forest soils at elevated CO2: a 15N and 13C tracer study. Global Change Biology, 11(10), 1816-1827. https://doi.org/10.1111/j.1365-2486.2005.01041.x
Carbon isotope discrimination indicates improving water-use efficiency of trees in northern Eurasia over the last 100 years
Saurer, M., Siegwolf, R. T. W., & Schweingruber, F. H. (2004). Carbon isotope discrimination indicates improving water-use efficiency of trees in northern Eurasia over the last 100 years. Global Change Biology, 10(12), 2109-2120. https://doi.org/10.1111/j.1365-2486.2004.00869.x
The input and fate of new C in two forest soils under elevated CO&lt;sub&gt;2&lt;/sub&gt;
Hagedorn, F., Spinnler, D., Bundt, M., Blaser, P., & Siegwolf, R. (2003). The input and fate of new C in two forest soils under elevated CO2. Global Change Biology, 9(6), 862-872. https://doi.org/10.1046/j.1365-2486.2003.00638.x
Potassium limits potential growth of bog vegetation under elevated atmospheric CO&lt;sub&gt;2&lt;/sub&gt; levels and N deposition
Hoosbeek, M. R., van Bremen, N., Vasander, H., Buttler, A., & Berendse, F. (2002). Potassium limits potential growth of bog vegetation under elevated atmospheric CO2 levels and N deposition. Global Change Biology, 8(8), 1130-1138. https://doi.org/10.1046/j.1365-2486.2002.00535.x