Active Filters

  • (-) Journal = Journal of Glaciology
  • (-) WSL Authors ≠ Farinotti, Daniel
  • (-) Journal = Journal of Glaciology
Search Results 1 - 20 of 87

Pages

  • RSS Feed
Select Page
A casting method using contrast-enhanced diethylphthalate for micro-computed tomography of snow
Lombardo, M., Schneebeli, M., & Löwe, H. (2021). A casting method using contrast-enhanced diethylphthalate for micro-computed tomography of snow. Journal of Glaciology, 67(265), 847-861. https://doi.org/10.1017/jog.2021.35
A comparison of powder-snow avalanches at Vallee de la Sionne, Switzerland, with plume theories
Turnbull, B., & McElwaine, J. N. (2007). A comparison of powder-snow avalanches at Vallee de la Sionne, Switzerland, with plume theories. Journal of Glaciology, 53(180), 30-40. https://doi.org/10.3189/172756507781833938
A sensitivity study of factors influencing warm/thin permafrost in the Swiss Alps
Luetschg, M., Lehning, M., & Haeberli, W. (2008). A sensitivity study of factors influencing warm/thin permafrost in the Swiss Alps. Journal of Glaciology, 54(187), 696-704. https://doi.org/10.3189/002214308786570881
Acoustic emission signatures prior to snow failure
Capelli, A., Reiweger, I., & Schweizer, J. (2018). Acoustic emission signatures prior to snow failure. Journal of Glaciology, 64(246), 543-554. https://doi.org/10.1017/jog.2018.43
Aldegondabreen glacier change since 1910 from structure-from-motion photogrammetry of archived terrestrial and aerial photographs: utility of a historic archive to obtain century-scale Svalbard glacier mass losses
Holmlund, E. S. (2021). Aldegondabreen glacier change since 1910 from structure-from-motion photogrammetry of archived terrestrial and aerial photographs: utility of a historic archive to obtain century-scale Svalbard glacier mass losses. Journal of Glaciology, 67(261), 107-116. https://doi.org/10.1017/jog.2020.89
An energy-based method to calculate streamwise density variations in snow avalanches
Buser, O., & Bartelt, P. (2015). An energy-based method to calculate streamwise density variations in snow avalanches. Journal of Glaciology, 61(227), 563-575. https://doi.org/10.3189/2015JoG14J054
Analysis of local ice crystal growth in snow
Krol, Q., & Löwe, H. (2016). Analysis of local ice crystal growth in snow. Journal of Glaciology, 62(232), 378-390. https://doi.org/10.1017/jog.2016.32
Angle of repose experiments with snow: role of grain shape and cohesion
Willibald, C., Löwe, H., Theile, T., Dual, J., & Schneebeli, M. (2020). Angle of repose experiments with snow: role of grain shape and cohesion. Journal of Glaciology, 66(258), 658-666. https://doi.org/10.1017/jog.2020.36
Automated prediction of wet-snow avalanche activity in the Swiss Alps
Hendrick, M., Techel, F., Volpi, M., Olevski, T., Pérez-Guillén, C., van Herwijnen, A., & Schweizer, J. (2023). Automated prediction of wet-snow avalanche activity in the Swiss Alps. Journal of Glaciology, 69(277), 1365-1378. https://doi.org/10.1017/jog.2023.24
Avalanche dynamics by Newton. Reply to comments on avalanche flow models based on the concept of random kinetic energy
Bartelt, P., & Buser, O. (2018). Avalanche dynamics by Newton. Reply to comments on avalanche flow models based on the concept of random kinetic energy. Journal of Glaciology, 64(243), 165-170. https://doi.org/10.1017/jog.2018.1
Avalanche forecasting - an expert system approach
Schweizer, J., & Föhn, P. M. B. (1996). Avalanche forecasting - an expert system approach. Journal of Glaciology, 42(141), 318-332. https://doi.org/10.1017/S0022143000004172
Bayesian estimation of basal conditions on Rutford Ice Stream, West Antarctica, from surface data
Raymond Pralong, M., & Gudmundsson, G. H. (2011). Bayesian estimation of basal conditions on Rutford Ice Stream, West Antarctica, from surface data. Journal of Glaciology, 57(202), 315-324. https://doi.org/10.3189/002214311796406004
Calculating dense-snow avalanche runout using a Voellmy-fluid model with active/passive longitudinal straining
Bartelt, P., Salm, B., & Gruber, U. (1999). Calculating dense-snow avalanche runout using a Voellmy-fluid model with active/passive longitudinal straining. Journal of Glaciology, 45(150), 242-254. https://doi.org/10.3189/S002214300000174X
Comparing measurements of snow mechanical properties relevant for slab avalanche release
Reuter, B., Proksch, M., Löwe, H., van Herwijnen, A., & Schweizer, J. (2019). Comparing measurements of snow mechanical properties relevant for slab avalanche release. Journal of Glaciology, 65(249), 55-67. https://doi.org/10.1017/jog.2018.93
Constraints on subglacial melt fluxes from observations of active subglacial lake recharge
Malczyk, G., Gourmelen, N., Werder, M., Wearing, M., & Goldberg, D. (2023). Constraints on subglacial melt fluxes from observations of active subglacial lake recharge. Journal of Glaciology. https://doi.org/10.1017/jog.2023.70
Continuous snowpack monitoring using upward-looking ground-penetrating radar technology
Schmid, L., Heilig, A., Mitterer, C., Schweizer, J., Maurer, H., Okorn, R., & Eisen, O. (2014). Continuous snowpack monitoring using upward-looking ground-penetrating radar technology. Journal of Glaciology, 60(221), 509-525. https://doi.org/10.3189/2014JoG13J084
Crack propagation speeds in weak snowpack layers
Bergfeld, B., Van Herwijnen, A., Bobillier, G., Larose, E., Moreau, L., Trottet, B., … Schweizer, J. (2022). Crack propagation speeds in weak snowpack layers. Journal of Glaciology, 68(269), 557-570. https://doi.org/10.1017/jog.2021.118
Cryoegg: development and field trials of a wireless subglacial probe for deep, fast-moving ice
Prior-Jones, M. R., Bagshaw, E. A., Lees, J., Clare, L., Burrow, S., Werder, M. A., … Hubbard, B. (2021). Cryoegg: development and field trials of a wireless subglacial probe for deep, fast-moving ice. Journal of Glaciology, 67(264), 627-640. https://doi.org/10.1017/jog.2021.16
Determining the evolution of an alpine glacier drainage system by solving inverse problems
Irarrazaval, I., Werder, M. A., Huss, M., Herman, F., & Mariethoz, G. (2021). Determining the evolution of an alpine glacier drainage system by solving inverse problems. Journal of Glaciology, 67(263), 421-434. https://doi.org/10.1017/jog.2020.116
Dispersive pressure and density variations in snow avalanches
Buser, O., & Bartelt, P. (2011). Dispersive pressure and density variations in snow avalanches. Journal of Glaciology, 57(205), 857-860. https://doi.org/10.3189/002214311798043870
 

Pages