Active Filters

  • (-) Journal = Landslides
  • (-) WSL Authors ≠ Christen, Marc
Search Results 1 - 17 of 17
  • RSS Feed
Select Page
Simulating glacier lake outburst floods (GLOFs) with a two-phase/layer debris flow model considering fluid-solid flow transitions
Meyrat, G., Munch, J., Cicoira, A., McArdell, B., Müller, C. R., Frey, H., & Bartelt, P. (2023). Simulating glacier lake outburst floods (GLOFs) with a two-phase/layer debris flow model considering fluid-solid flow transitions. Landslides. https://doi.org/10.1007/s10346-023-02157-w
Voellmy-type mixture rheologies for dilatant, two-layer debris flow models
Meyrat, G., McArdell, B., Müller, C. R., Munch, J., & Bartelt, P. (2023). Voellmy-type mixture rheologies for dilatant, two-layer debris flow models. Landslides, 20, 2405-2420. https://doi.org/10.1007/s10346-023-02092-w
Highly energetic rockfalls: back analysis of the 2015 event from the Mel de la Niva, Switzerland
Noël, F., Nordang, S. F., Jaboyedoff, M., Travelletti, J., Matasci, B., Digout, M., … Locat, J. (2023). Highly energetic rockfalls: back analysis of the 2015 event from the Mel de la Niva, Switzerland. Landslides, 20(9), 1561-1582. https://doi.org/10.1007/s10346-023-02054-2
The Tamins rock avalanche (eastern Switzerland): timing and emplacement processes
Pfiffner, O. A., Ivy-Ochs, S., Mussina, Z., Aaron, J., Steinemann, O., Vockenhuber, C., & Akçar, N. (2023). The Tamins rock avalanche (eastern Switzerland): timing and emplacement processes. Landslides, 20(2), 877-899. https://doi.org/10.1007/s10346-022-02004-4
Failure and disaster-causing mechanism of a typhoon-induced large landslide in Yongjia, Zhejiang, China
Zhuang, Y., Xing, A., Sun, Q., Jiang, Y., Zhang, Y., & Wang, C. (2023). Failure and disaster-causing mechanism of a typhoon-induced large landslide in Yongjia, Zhejiang, China. Landslides, 20(12), 2257-2269. https://doi.org/10.1007/s10346-023-02099-3
Probabilistic prediction of rock avalanche runout using a numerical model
Aaron, J., McDougall, S., Kowalski, J., Mitchell, A., & Nolde, N. (2022). Probabilistic prediction of rock avalanche runout using a numerical model. Landslides, 19, 2853-2869. https://doi.org/10.1007/s10346-022-01939-y
The potential of point clouds for the analysis of rock kinematics in large slope instabilities: examples from the Swiss Alps: Brinzauls, Pizzo Cengalo and Spitze Stei
Kenner, R., Gischig, V., Gojcic, Z., Quéau, Y., Kienholz, C., Figi, D., … Bonanomi, Y. (2022). The potential of point clouds for the analysis of rock kinematics in large slope instabilities: examples from the Swiss Alps: Brinzauls, Pizzo Cengalo and Spitze Stei. Landslides, 19, 1357-1377. https://doi.org/10.1007/s10346-022-01852-4
A dilatant, two-layer debris flow model validated by flow density measurements at the Swiss illgraben test site
Meyrat, G., McArdell, B., Ivanova, K., Müller, C., & Bartelt, P. (2022). A dilatant, two-layer debris flow model validated by flow density measurements at the Swiss illgraben test site. Landslides, 19, 265-276. https://doi.org/10.1007/s10346-021-01733-2
Three-dimensional and real-scale modeling of flow regimes in dense snow avalanches
Li, X., Sovilla, B., Jiang, C., & Gaume, J. (2021). Three-dimensional and real-scale modeling of flow regimes in dense snow avalanches. Landslides, 18, 3393-3406. https://doi.org/10.1007/s10346-021-01692-8
LandAware: a new international network on Landslide Early Warning Systems
Calvello, M., Devoli, G., Freeborough, K., Gariano, S. L., Guzzetti, F., Kirschbaum, D., … Stähli, M. (2020). LandAware: a new international network on Landslide Early Warning Systems. Landslides, 17(11), 2699-2702. https://doi.org/10.1007/s10346-020-01548-7
Assessing the potential of soil moisture measurements for regional landslide early warning
Wicki, A., Lehmann, P., Hauck, C., Seneviratne, S. I., Waldner, P., & Stähli, M. (2020). Assessing the potential of soil moisture measurements for regional landslide early warning. Landslides, 17, 1881-1896. https://doi.org/10.1007/s10346-020-01400-y
A robust debris-flow and GLOF risk management strategy for a data-scarce catchment in Santa Teresa, Peru
Frey, H., Huggel, C., Bühler, Y., Buis, D., Burga, M. D., Choquevilca, W., … Walser, M. (2016). A robust debris-flow and GLOF risk management strategy for a data-scarce catchment in Santa Teresa, Peru. Landslides, 13(6), 1493-1507. https://doi.org/10.1007/s10346-015-0669-z
Fatal landslides in Europe
Haque, U., Blum, P., da Silva, P. F., Andersen, P., Pilz, J., Chalov, S. R., … Keellings, D. (2016). Fatal landslides in Europe. Landslides, 13(6), 1545-1554. https://doi.org/10.1007/s10346-016-0689-3
Forecasting rock slope failure: how reliable and effective are warning systems?
Sättele, M., Krautblatter, M., Bründl, M., & Straub, D. (2016). Forecasting rock slope failure: how reliable and effective are warning systems? Landslides, 13(4), 737-750. https://doi.org/10.1007/s10346-015-0605-2
Measurements of hillslope debris flow impact pressure on obstacles
Bugnion, L., McArdell, B. W., Bartelt, P., & Wendeler, C. (2012). Measurements of hillslope debris flow impact pressure on obstacles. Landslides, 9(2), 179-187. https://doi.org/10.1007/s10346-011-0294-4
Extremely large rockslides and rock avalanches in the Tien Shan Mountains, Kyrgyzstan
Strom, A. L., & Korup, O. (2006). Extremely large rockslides and rock avalanches in the Tien Shan Mountains, Kyrgyzstan. Landslides, 3(2), 125-136. https://doi.org/10.1007/s10346-005-0027-7
Distribution of landslides in southwest New Zealand
Korup, O. (2005). Distribution of landslides in southwest New Zealand. Landslides, 2(1), 43-51. https://doi.org/10.1007/s10346-004-0042-0