Active Filters

  • (-) Journal = Science
Search Results 1 - 18 of 18
  • RSS Feed
Select Page
Response to comment on "Increased growing-season productivity drives earlier autumn leaf senescence in temperate trees"
Zani, D., Crowther, T. W., Mo, L., Renner, S. S., & Zohner, C. M. (2021). Response to comment on "Increased growing-season productivity drives earlier autumn leaf senescence in temperate trees". Science, 371(6533), eabg2679 (3 pp.). https://doi.org/10.1126/science.abg2679
Novel trophic interactions under climate change promote alpine plant coexistence
Descombes, P., Pitteloud, C., Glauser, G., Defossez, E., Kergunteuil, A., Allard, P. M., … Pellissier, L. (2020). Novel trophic interactions under climate change promote alpine plant coexistence. Science, 370(6523), 1469-1473. https://doi.org/10.1126/science.abd7015
Pervasive shifts in forest dynamics in a changing world
McDowell, N. G., Allen, C. D., Anderson-Teixeira, K., Aukema, B. H., Bond-Lamberty, B., Chini, L., … Xu, C. (2020). Pervasive shifts in forest dynamics in a changing world. Science, 368(6494), eaaz9463 (10 pp.). https://doi.org/10.1126/science.aaz9463
Active restoration accelerates the carbon recovery of human-modified tropical forests
Philipson, C. D., Cutler, M. E. J., Brodrick, P. G., Asner, G. P., Boyd, D. S., Moura Costa, P., … Burslem, D. F. R. P. (2020). Active restoration accelerates the carbon recovery of human-modified tropical forests. Science, 369(6505), 838-841. https://doi.org/10.1126/science.aay4490
Forest microclimate dynamics drive plant responses to warming
Zellweger, F., De Frenne, P., Lenoir, J., Vangansbeke, P., Verheyen, K., Bernhardt-Römermann, M., … Coomes, D. (2020). Forest microclimate dynamics drive plant responses to warming. Science, 368(6492), 772-775. https://doi.org/10.1126/science.aba6880
Response to Comment on "Forest microclimate dynamics drive plant responses to warming"
Zellweger, F., De Frenne, P., Lenoir, J., Vangansbeke, P., Verheyen, K., Bernhardt-Römermann, M., … Coomes, D. (2020). Response to Comment on "Forest microclimate dynamics drive plant responses to warming". Science, 370(6522), eabf2939 (4 pp.). https://doi.org/10.1126/science.abf2939
Response to comment on "forest microclimate dynamics drive plant responses to warming"
Zellweger, F., De Frenne, P., Lenoir, J., Vangansbeke, P., Verheyen, K., Bernhardt-Römermann, M., … Coomes, D. (2020). Response to comment on "forest microclimate dynamics drive plant responses to warming". Science, 370(6520), eabd6193 (3 pp.). https://doi.org/10.1126/science.abd6193
Above- and belowground linkages shape responses of mountain vegetation to climate change
Hagedorn, F., Gavazov, K., & Alexander, J. M. (2019). Above- and belowground linkages shape responses of mountain vegetation to climate change. Science, 365(6458), 1119-1123. https://doi.org/10.1126/science.aax4737
Middle Stone Age foragers resided in high elevations of the glaciated Bale Mountains, Ethiopia
Ossendorf, G., Groos, A. R., Bromm, T., Tekelemariam, M. G., Glaser, B., Lesur, J., … Miehe, G. (2019). Middle Stone Age foragers resided in high elevations of the glaciated Bale Mountains, Ethiopia. Science, 365(6453), 583-587. https://doi.org/10.1126/science.aaw8942
New particle formation in the free troposphere: a question of chemistry and timing
Bianchi, F., Tröstl, J., Junninen, H., Frege, C., Henne, S., Hoyle, C. R., … Baltensperger, U. (2016). New particle formation in the free troposphere: a question of chemistry and timing. Science, 352(6289), 1109-1112. https://doi.org/10.1126/science.aad5456
Comment on "Worldwide evidence of a unimodal relationship between productivity and plant species richness"
Tredennick, A. T., Adler, P. B., Grace, J. B., Harpole, W. S., Borer, E. T., Seabloom, E. W., … Yang, L. H. (2016). Comment on "Worldwide evidence of a unimodal relationship between productivity and plant species richness". Science, 351(6272), 457 (4 pp.). https://doi.org/10.1126/science.aad6236
Six centuries of variability and extremes in a coupled marine-terrestrial ecosystem
Black, B. A., Sydeman, W. A., Frank, D. C., Griffin, D., Stahle, D. W., García-Reyes, M., … Peterson, W. T. (2014). Six centuries of variability and extremes in a coupled marine-terrestrial ecosystem. Science, 345(6203), 1498-1502. https://doi.org/10.1126/science.1253209
Productivity is a poor predictor of plant species richness
Adler, P. B., Seabloom, E. W., Borer, E. T., Hillebrand, H., Hautier, Y., Hector, A., … Yang, L. H. (2011). Productivity is a poor predictor of plant species richness. Science, 333(6050), 1750-1753. https://doi.org/10.1126/science.1204498
2500 years of European climate variability and human susceptibility
Büntgen, U., Tegel, W., Nicolussi, K., McCormick, M., Frank, D., Trouet, V., … Esper, J. (2011). 2500 years of European climate variability and human susceptibility. Science, 331(6017), 578-582. https://doi.org/10.1126/science.1197175
Persistent positive North Atlantic Oscillation Mode dominated the medieval climate anomaly
Trouet, V., Esper, J., Graham, N. E., Baker, A., Scourse, J. D., & Frank, D. C. (2009). Persistent positive North Atlantic Oscillation Mode dominated the medieval climate anomaly. Science, 324(5923), 78-80. https://doi.org/10.1126/science.1166349
Impact factor fever
Cherubini, P. (2008). Impact factor fever. Science, 322(5899), 191. https://doi.org/10.1126/science.322.5899.191b
Low-frequency signals in long tree-ring chronologies for reconstructing past temperature variability
Esper, J., Cook, E. R., & Schweingruber, F. H. (2002). Low-frequency signals in long tree-ring chronologies for reconstructing past temperature variability. Science, 295(5563), 2250-2253. https://doi.org/10.1126/science.1066208
Tree-ring chronologies and climate variability
Mann, M. E., Hughes, M. K., Cook, E. R., & Esper, J. (2002). Tree-ring chronologies and climate variability. Science, 296(5569), 848-849. https://doi.org/10.1126/science.296.5569.848