Active Filters

  • (-) Keywords = European beech
Search Results 1 - 15 of 15
  • RSS Feed
Select Page
Variation in leaf morphological traits of European beech and Norway spruce over two decades in Switzerland
Zhu, J., Thimonier, A., Etzold, S., Meusburger, K., Waldner, P., Schmitt, M., … Lehmann, M. M. (2022). Variation in leaf morphological traits of European beech and Norway spruce over two decades in Switzerland. Frontiers in Forests and Global Change, 4, 778351 (17 pp.). https://doi.org/10.3389/ffgc.2021.778351
Did the 2018 megadrought change the partitioning of growth between tree sizes and species? A Swiss case-study
Bose, A. K., Rohner, B., Bottero, A., Ferretti, M., & Forrester, D. I. (2021). Did the 2018 megadrought change the partitioning of growth between tree sizes and species? A Swiss case-study. Plant Biology. https://doi.org/10.1111/plb.13380
High plasticity in germination and establishment success in the dominant forest tree Fagus sylvatica across Europe
Muffler, L., Schmeddes, J., Weigel, R., Barbeta, A., Beil, I., Bolte, A., … Kreyling, J. (2021). High plasticity in germination and establishment success in the dominant forest tree Fagus sylvatica across Europe. Global Ecology and Biogeography, 30(8), 1583-1596. https://doi.org/10.1111/geb.13320
Verfrühter Fruchtabwurf in Schweizer Buchenbeständen im Hitze- und Trockensommer 2018
Nussbaumer, A., Meusburger, K., Schmitt, M., Waldner, P., Gehrig, R., Haeni, M., … Thimonier, A. (2021). Verfrühter Fruchtabwurf in Schweizer Buchenbeständen im Hitze- und Trockensommer 2018. Schweizerische Zeitschrift für Forstwesen, 172(3), 166-175. https://doi.org/10.3188/szf.2021.0166
Disturbance history is a key driver of tree life span in temperate primary forests
Pavlin, J., Nagel, T. A., Svitok, M., Pettit, J. L., Begović, K., Mikac, S., … Svoboda, M. (2021). Disturbance history is a key driver of tree life span in temperate primary forests. Journal of Vegetation Science, 32(5), e13069 (12 pp.). https://doi.org/10.1111/jvs.13069
Large‐scale early‐wilting response of Central European forests to the 2018 extreme drought
Brun, P., Psomas, A., Ginzler, C., Thuiller, W., Zappa, M., & Zimmermann, N. E. (2020). Large‐scale early‐wilting response of Central European forests to the 2018 extreme drought. Global Change Biology, 26, 7021-7035. https://doi.org/10.1111/gcb.15360
Inter-individual variability in spring phenology of temperate deciduous trees depends on species, tree size and previous year autumn phenology
Marchand, L. J., Dox, I., Gričar, J., Prislan, P., Leys, S., Van den Bulcke, J., … Campioli, M. (2020). Inter-individual variability in spring phenology of temperate deciduous trees depends on species, tree size and previous year autumn phenology. Agricultural and Forest Meteorology, 290, 108031 (8 pp.). https://doi.org/10.1016/j.agrformet.2020.108031
Development phase convergence across scale in a primeval European beech (<em>Fagus sylvatica </em>L.) forest
Zenner, E. K., Peck, J. L. E., & Hobi, M. L. (2020). Development phase convergence across scale in a primeval European beech (Fagus sylvatica L.) forest. Forest Ecology and Management, 460, 117889 (9 pp.). https://doi.org/10.1016/j.foreco.2020.117889
Growth and quality of <i>Fagus sylvatica</i> saplings depend on seed source, site, and browsing intensity
Frank, A., Heiri, C., & Kupferschmid, A. D. (2019). Growth and quality of Fagus sylvatica saplings depend on seed source, site, and browsing intensity. Ecosphere, 10(1), e02580 (19 pp.). https://doi.org/10.1002/ecs2.2580
Climatically controlled reproduction drives interannual growth variability in a temperate tree species
Hacket-Pain, A. J., Ascoli, D., Vacchiano, G., Biondi, F., Cavin, L., Conedera, M., … Zang, C. S. (2018). Climatically controlled reproduction drives interannual growth variability in a temperate tree species. Ecology Letters, 21(12), 1833-1844. https://doi.org/10.1111/ele.13158
EuMIXFOR empirical forest mensuration and ring width data from pure and mixed stands of Scots pine (<i>Pinus sylvestris L.</i>) and European beech (<i>Fagus sylvatica L.</i>) through Europe
Heym, M., Ruíz-Peinado, R., Del Río, M., Bielak, K., Forrester, D. I., Dirnberger, G., … Pretzsch, H. (2017). EuMIXFOR empirical forest mensuration and ring width data from pure and mixed stands of Scots pine (Pinus sylvestris L.) and European beech (Fagus sylvatica L.) through Europe. Annals of Forest Science, 74(3), 63 (9 pp.). https://doi.org/10.1007/s13595-017-0660-z
Wood structural differences between northern and southern beech provenances growing at a moderate site
Sterck, F., Eilmann, B., Wegner, L., de Vries, S. M. G., von Arx, G., Mohren, G. M. J., … Sass-Klaassen, U. (2014). Wood structural differences between northern and southern beech provenances growing at a moderate site. Tree Physiology, 34(8), 882-893. https://doi.org/10.1093/treephys/tpu069
Post-fire restoration of beech stands in the Southern Alps by natural regeneration
Ascoli, D., Castagneri, D., Valsecchi, C., Conedera, M., & Bovio, G. (2013). Post-fire restoration of beech stands in the Southern Alps by natural regeneration. Ecological Engineering, 54, 210-217. https://doi.org/10.1016/j.ecoleng.2013.01.032
Comparing the intra-annual wood formation of three European species (<I>Fagus sylvatica</I>, <I>Quercus petraea</I> and <I>Pinus sylvestris</I>) as related to leaf phenology and non-structural carbohydrate dynamics
Michelot, A., Simard, S., Rathgeber, C., Dufrêne, E., & Damesin, C. (2012). Comparing the intra-annual wood formation of three European species (Fagus sylvatica, Quercus petraea and Pinus sylvestris) as related to leaf phenology and non-structural carbohydrate dynamics. Tree Physiology, 32(8), 1033-1043. https://doi.org/10.1093/treephys/tps052
Einrichtung und Bewirtschaftung forstlicher Generhaltungs-bestaende am Beispiel der Buche (<I>Fagus sylvatica</I> L.) in Rheinland-Pfalz (Deutschland)
Maurer, W. D., & Tabel, U. (2000). Einrichtung und Bewirtschaftung forstlicher Generhaltungs-bestaende am Beispiel der Buche (Fagus sylvatica L.) in Rheinland-Pfalz (Deutschland). Forest Snow and Landscape Research, 75(1-2), 219-231.