Active Filters

  • (-) Keywords = LiDAR
Search Results 1 - 16 of 16
  • CSV Spreadsheet
  • Excel Spreadsheet
  • RSS Feed
Select Page
Predicting selected forest stand characteristics with multispectral ALS data
Dalponte, M., Ene, L. T., Gobakken, T., Næsset, E., & Gianelle, D. (2018). Predicting selected forest stand characteristics with multispectral ALS data. Remote Sensing, 10(4), 586 (15 pp.). https://doi.org/10.3390/rs10040586
Occupancy dynamics of the Wood Warbler <I>Phylloscopus sibilatrix</I> assessed with habitat and remote sensing data
Huber, N., Kéry, M., & Pasinelli, G. (2017). Occupancy dynamics of the Wood Warbler Phylloscopus sibilatrix assessed with habitat and remote sensing data. Ibis, 159(3), 623-637. https://doi.org/10.1111/ibi.12472
Remotely sensed forest habitat structures improve regional species conservation
Rechsteiner, C., Zellweger, F., Gerber, A., Breiner, F. T., & Bollmann, K. (2017). Remotely sensed forest habitat structures improve regional species conservation. Remote Sensing in Ecology and Conservation, 3(4), 247-258. https://doi.org/10.1002/rse2.46
Beta diversity of plants, birds and butterflies is closely associated with climate and habitat structure
Zellweger, F., Roth, T., Bugmann, H., & Bollmann, K. (2017). Beta diversity of plants, birds and butterflies is closely associated with climate and habitat structure. Global Ecology and Biogeography, 26(8), 898-906. https://doi.org/10.1111/geb.12598
Der Schweizer Wald und seine Biodiversität: LiDAR ermöglicht neue Waldstrukturanalysen
Zellweger, F., & Bollmann, K. (2017). Der Schweizer Wald und seine Biodiversität: LiDAR ermöglicht neue Waldstrukturanalysen. Schweizerische Zeitschrift für Forstwesen, 168(3), 142-150. https://doi.org/10.3188/szf.2017.0142
Mapping secondary forest succession on abandoned agricultural land in the Polish Carpathians
Kolecka, N., Kozak, J., Kaim, D., Dobosz, M., Ginzler, C., & Psomas, A. (2016). Mapping secondary forest succession on abandoned agricultural land in the Polish Carpathians. In L. Halounova, V. Šafář, P. L. N. Raju, L. Plánka, V. Ždímal, T. Srinivasa Kumar, … Q. Weng (Eds.), The international archives of the photogrammetry, remote sensing and spatial information sciences: Vol. XLI-B8. XXIII ISPRS congress, commission VIII (pp. 931-935). https://doi.org/10.5194/isprs-archives-XLI-B8-931-2016
Environmental predictors of species richness in forest landscapes: abiotic factors versus vegetation structure
Zellweger, F., Baltensweiler, A., Ginzler, C., Roth, T., Braunisch, V., Bugmann, H., & Bollmann, K. (2016). Environmental predictors of species richness in forest landscapes: abiotic factors versus vegetation structure. Journal of Biogeography, 43(6), 1080-1090. https://doi.org/10.1111/jbi.12696
Are flat-field snow depth measurements representative? A comparison of selected index sites with areal snow depth measurements at the small catchment scale
Grünewald, T., & Lehning, M. (2015). Are flat-field snow depth measurements representative? A comparison of selected index sites with areal snow depth measurements at the small catchment scale. Hydrological Processes, 29(7), 1717-1728. https://doi.org/10.1002/hyp.10295
Mapping secondary forest succession on abandoned agricultural land with LiDAR point clouds and terrestrial photography
Kolecka, N., Kozak, J., Kaim, D., Dobosz, M., Ginzler, C., & Psomas, A. (2015). Mapping secondary forest succession on abandoned agricultural land with LiDAR point clouds and terrestrial photography. Remote Sensing, 7(7), 8300-8322. https://doi.org/10.3390/rs70708300
High-resolution remote sensing data improves models of species richness
Camathias, L., Bergamini, A., Küchler, M., Stofer, S., & Baltensweiler, A. (2013). High-resolution remote sensing data improves models of species richness. Applied Vegetation Science, 16(4), 539-551. https://doi.org/10.1111/avsc.12028
Characterization of an alpine tree line using airborne LiDAR data and physiological modeling
Coops, N. C., Morsdorf, F., Schaepman, M. E., & Zimmermann, N. E. (2013). Characterization of an alpine tree line using airborne LiDAR data and physiological modeling. Global Change Biology, 19(12), 3808-3821. https://doi.org/10.1111/gcb.12319
Remotely sensed forest structural complexity predicts multi species occurrence at the landscape scale
Zellweger, F., Braunisch, V., Baltensweiler, A., & Bollmann, K. (2013). Remotely sensed forest structural complexity predicts multi species occurrence at the landscape scale. Forest Ecology and Management, 307, 303-312. https://doi.org/10.1016/j.foreco.2013.07.023
Digital photogrammetric camera evaluation - generation of digital elevation models
Haala, N., Hastedt, H., Wolf, K., Ressl, C., & Baltrusch, S. (2010). Digital photogrammetric camera evaluation - generation of digital elevation models. Photogrammetrie, Fernerkundung, Geoinformation, (2), 99-115. https://doi.org/10.1127/1432-8364/2010/0043
Empirical prediction of debris-flow mobility and deposition on fans
Scheidl, C., & Rickenmann, D. (2010). Empirical prediction of debris-flow mobility and deposition on fans. Earth Surface Processes and Landforms, 35(2), 157-173. https://doi.org/10.1002/esp.1897
Extraction of forest parameters in a mire biotope using high-resolution digital surface models and airborne imagery
Waser, L. T., Ginzler, C., Kuechle, M., Thee, P., Baltsavias, E., & Eisenbeiss, H. (2007). Extraction of forest parameters in a mire biotope using high-resolution digital surface models and airborne imagery. In IEEE international geoscience and remote sensing symposium. IGARSS Barcelona 2007. Sensing and understanding our planet (pp. 1265-1270). https://doi.org/10.1109/IGARSS.2007.4423036
Modeling fractional shrub/tree cover and multi-temporal changes in mire ecosystems using high-resolution digital surface models and CIR aerial images
Waser, L. T., Ginzler, C., Kuechler, M., Baltsavias, E., & Eisenbeiss, H. (2007). Modeling fractional shrub/tree cover and multi-temporal changes in mire ecosystems using high-resolution digital surface models and CIR aerial images. In IEEE international geoscience and remote sensing symposium. IGARSS Barcelona 2007. Sensing and understanding our planet (p. 2288). https://doi.org/10.1109/IGARSS.2007.4423298