Active Filters

  • (-) Keywords = UAV
Search Results 1 - 9 of 9
  • RSS Feed
Select Page
Drone‐based physiological index reveals long‐term acclimation and drought stress responses in trees
D'Odorico, P., Schönbeck, L., Vitali, V., Meusburger, K., Schaub, M., Ginzler, C., … Ensminger, I. (2021). Drone‐based physiological index reveals long‐term acclimation and drought stress responses in trees. Plant, Cell and Environment. https://doi.org/10.1111/pce.14177
UAV-based Lidar high-resolution snow depth mapping in the Swiss Alps: comparing flat and steep forests
Koutantou, K., Mazzotti, G., & Brunner, P. (2021). UAV-based Lidar high-resolution snow depth mapping in the Swiss Alps: comparing flat and steep forests. In N. Paparoditis, C. Mallet, F. Lafarge, M. Y. Yang, J. Jiang, A. Shaker, … F. S. Faruque (Eds.), The international archives of the photogrammetry, remote sensing and spatial information sciences: Vol. XLIII-B3-2021. XXIV ISPRS congress "Imaging today, foreseeing tomorrow", commission III (pp. 477-484). https://doi.org/10.5194/isprs-archives-XLIII-B3-2021-477-2021
A cost-effective portable L-band radiometer for drone and ground-based applications
Houtz, D., Naderpour, R., & Schwank, M. (2020). A cost-effective portable L-band radiometer for drone and ground-based applications. In IEEE international geoscience and remote sensing symposium (IGARSS). 2020 IEEE international geoscience & remote sensing symposium. Proceedings (pp. 6531-6534). https://doi.org/10.1109/IGARSS39084.2020.9324231
Portable L-band radiometer (PoLRa): design and characterization
Houtz, D., Naderpour, R., & Schwank, M. (2020). Portable L-band radiometer (PoLRa): design and characterization. Remote Sensing, 12(17), 2780 (15 pp.). https://doi.org/10.3390/rs12172780
Seasonal dynamics of a temperate Tibetan glacier revealed by high-resolution UAV photogrammetry and in situ measurements
Yang, W., Zhao, C., Westoby, M., Yao, T., Wang, Y., Pellicciotti, F., … Miles, E. (2020). Seasonal dynamics of a temperate Tibetan glacier revealed by high-resolution UAV photogrammetry and in situ measurements. Remote Sensing, 12(15), 2389 (16 pp.). https://doi.org/10.3390/RS12152389
Subaquatic digital elevation models from UAV-imagery
Mulsow, C., Kenner, R., Bühler, Y., Stoffel, A., & Maas, H. G. (2018). Subaquatic digital elevation models from UAV-imagery. In F. Remondino, I. Toschi, & T. Fuse (Eds.), International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences: Vol. XLII-2. ISPRS TC II Mid-term Symposium "Towards Photogrammetry 2020" (pp. 739-744). https://doi.org/10.5194/isprs-archives-XLII-2-739-2018
Three-dimensional thermal characterization of forest canopies using UAV photogrammetry
Webster, C., Westoby, M., Rutter, N., & Jonas, T. (2018). Three-dimensional thermal characterization of forest canopies using UAV photogrammetry. Remote Sensing of Environment, 209, 835-847. https://doi.org/10.1016/j.rse.2017.09.033
Use of unmanned aerial system to assess wildlife (<em>Sus scrofa</em>) damage to crops (<em>Zea mays</em>)
Michez, A., Morelle, K., Lehaire, F., Widar, J., Authelet, M., Vermeulen, C., & Lejeune, P. (2016). Use of unmanned aerial system to assess wildlife (Sus scrofa) damage to crops (Zea mays). Journal of Unmanned Vehicle Systems, 4(4), 266-275. https://doi.org/10.1139/juvs-2016-0014
Geo-referenced mapping using an airborne 3D time-of-flight camera
Kohoutek, T. K., Nitsche, M., & Eisenbeiss, H. (2012). Geo-referenced mapping using an airborne 3D time-of-flight camera. In D. D. Lichti & A. F. Habib (Eds.), International archives of the photogrammetry, remote sensing and spatial information sciences: Vol. 38. ISPRS Calgary workshop (pp. 151-155). https://doi.org/10.5194/isprsarchives-XXXVIII-5-W12-151-2011