Active Filters

  • (-) Keywords = alpine
Search Results 1 - 20 of 21
Select Page
Warming-induced tipping points of Arctic and alpine shrub recruitment
Lu, X., Liang, E., Babst, F., Camarero, J. J., & Büntgen, U. (2022). Warming-induced tipping points of Arctic and alpine shrub recruitment. Proceedings of the National Academy of Sciences of the United States of America PNAS, 119(9), e2118120119 (3 pp.). https://doi.org/10.1073/pnas.2118120119
Fast and persistent responses of alpine permafrost microbial communities to in situ warming
Perez-Mon, C., Stierli, B., Plötze, M., & Frey, B. (2022). Fast and persistent responses of alpine permafrost microbial communities to in situ warming. Science of the Total Environment, 807, 150720 (15 pp.). https://doi.org/10.1016/j.scitotenv.2021.150720
Directional turnover towards larger‐ranged plants over time and across habitats
Staude, I. R., Pereira, H. M., Daskalova, G. N., Bernhardt‐Römermann, M., Diekmann, M., Pauli, H., … Baeten, L. (2022). Directional turnover towards larger‐ranged plants over time and across habitats. Ecology Letters, 25, 446-482. https://doi.org/10.1111/ele.13937
Shotgun metagenomics reveals distinct functional diversity and metabolic capabilities between 12 000-year-old permafrost and active layers on Muot da Barba Peider (Swiss Alps)
Perez-Mon, C., Qi, W., Vikram, S., Frossard, A., Makhalanyane, T., Cowan, D., & Frey, B. (2021). Shotgun metagenomics reveals distinct functional diversity and metabolic capabilities between 12 000-year-old permafrost and active layers on Muot da Barba Peider (Swiss Alps). Microbial Genomics, 7(4), 000558 (13 pp.). https://doi.org/10.1099/mgen.0.000558
The tundra phenology database: more than two decades of tundra phenology responses to climate change
Prevéy, J. S., Elmendorf, S. C., Bjorkman, A., Alatalo, J. M., Ashton, I., Assmann, J. J., … Yang, Y. (2021). The tundra phenology database: more than two decades of tundra phenology responses to climate change. Arctic Science. https://doi.org/10.1139/as-2020-0041
The treasure vault can be opened: large-scale genome skimming works well using herbarium and silica gel dried material
Alsos, I. G., Lavergne, S., Merkel, M. K. F., Boleda, M., Lammers, Y., Alberti, A., … Coissac, E. (2020). The treasure vault can be opened: large-scale genome skimming works well using herbarium and silica gel dried material. Plants, 9(4), 432 (18 pp.). https://doi.org/10.3390/plants9040432
Temperatures beyond the community optimum promote the dominance of heat-adapted, fast growing and stress resistant bacteria in alpine soils
Donhauser, J., Niklaus, P. A., Rousk, J., Larose, C., & Frey, B. (2020). Temperatures beyond the community optimum promote the dominance of heat-adapted, fast growing and stress resistant bacteria in alpine soils. Soil Biology and Biochemistry, 148, 107873 (16 pp.). https://doi.org/10.1016/j.soilbio.2020.107873
Functional and structural responses of Arctic and alpine soil prokaryotic and fungal communities under freeze-thaw cycles of different frequencies
Perez-Mon, C., Frey, B., & Frossard, A. (2020). Functional and structural responses of Arctic and alpine soil prokaryotic and fungal communities under freeze-thaw cycles of different frequencies. Frontiers in Microbiology, 11, 982 (14 pp.). https://doi.org/10.3389/fmicb.2020.00982
Spatial detection of alpine treeline ecotones in the Western United States
Wei, C., Karger, D. N., & Wilson, A. M. (2020). Spatial detection of alpine treeline ecotones in the Western United States. Remote Sensing of Environment, 240, 111672 (11 pp.). https://doi.org/10.1016/j.rse.2020.111672
The soil microbiome of GLORIA mountain summits in the Swiss Alps
Adamczyk, M., Hagedorn, F., Wipf, S., Donhauser, J., Vittoz, P., Rixen, C., … Frey, B. (2019). The soil microbiome of GLORIA mountain summits in the Swiss Alps. Frontiers in Microbiology, 10, 1080 (21 pp.). https://doi.org/10.3389/fmicb.2019.01080
Human trampling disturbance exerts different ecological effects at contrasting elevational range limits
Chardon, N. I., Rixen, C., Wipf, S., & Doak, D. F. (2019). Human trampling disturbance exerts different ecological effects at contrasting elevational range limits. Journal of Applied Ecology, 56(6), 1389-1399. https://doi.org/10.1111/1365-2664.13384
Tundra Trait Team: a database of plant traits spanning the tundra biome
Bjorkman, A. D., Myers-Smith, I. H., Elmendorf, S. C., Normand, S., Thomas, H. J. D., Alatalo, J. M., … Zamin, T. (2018). Tundra Trait Team: a database of plant traits spanning the tundra biome. Global Ecology and Biogeography, 27(12), 1402-1411. https://doi.org/10.1111/geb.12821
Local trampling disturbance effects on alpine plant populations and communities: negative implications for climate change vulnerability
Chardon, N. I., Wipf, S., Rixen, C., Beilstein, A., & Doak, D. F. (2018). Local trampling disturbance effects on alpine plant populations and communities: negative implications for climate change vulnerability. Ecology and Evolution, 8(16), 7921-7935. https://doi.org/10.1002/ece3.4276
Community-level plant palatability increases with elevation as insect herbivore abundance declines
Descombes, P., Marchon, J., Pradervand, J. N., Bilat, J., Guisan, A., Rasmann, S., & Pellissier, L. (2017). Community-level plant palatability increases with elevation as insect herbivore abundance declines. Journal of Ecology, 105(1), 142-151. https://doi.org/10.1111/1365-2745.12664
Facilitative plant interactions and climate simultaneously drive alpine plant diversity
Cavieres, L. A., Brooker, R. W., Butterfield, B. J., Cook, B. J., Kikvidze, Z., Lortie, C. J., … Callaway, R. M. (2014). Facilitative plant interactions and climate simultaneously drive alpine plant diversity. Ecology Letters, 17(2), 193-202. https://doi.org/10.1111/ele.12217
Characterization of an alpine tree line using airborne LiDAR data and physiological modeling
Coops, N. C., Morsdorf, F., Schaepman, M. E., & Zimmermann, N. E. (2013). Characterization of an alpine tree line using airborne LiDAR data and physiological modeling. Global Change Biology, 19(12), 3808-3821. https://doi.org/10.1111/gcb.12319
Contemporary gene flow and mating system of <i>Arabis alpina</i> in a Central European alpine landscape
Buehler, D., Graf, R., Holderegger, R., & Gugerli, F. (2012). Contemporary gene flow and mating system of Arabis alpina in a Central European alpine landscape. Annals of Botany, 109(7), 1359-1367. https://doi.org/10.1093/aob/mcs066
Global assessment of experimental climate warming on tundra vegetation: heterogeneity over space and time
Elmendorf, S. C., Henry, G. H. R., Hollister, R. D., Björk, R. G., Bjorkman, A. D., Callaghan, T. V., … Wookey, P. A. (2012). Global assessment of experimental climate warming on tundra vegetation: heterogeneity over space and time. Ecology Letters, 15(2), 164-175. https://doi.org/10.1111/j.1461-0248.2011.01716.x
Using the 454 pyrosequencing-based technique in the development of nuclear microsatellite loci in the alpine plant <em>Arabis alpina</em> (Brassicaceae)
Buehler, D., Graf, R., Holderegger, R., & Gugerli, F. (2011). Using the 454 pyrosequencing-based technique in the development of nuclear microsatellite loci in the alpine plant Arabis alpina (Brassicaceae). American Journal of Botany, 98(5), e103-e105. https://doi.org/10.3732/ajb.1000488
Shrub expansion in tundra ecosystems: dynamics, impacts and research priorities
Myers-Smith, I. H., Forbes, B. C., Wilmking, M., Hallinger, M., Lantz, T., Blok, D., … Hik, D. S. (2011). Shrub expansion in tundra ecosystems: dynamics, impacts and research priorities. Environmental Research Letters, 6(4), 045509 (15 pp.). https://doi.org/10.1088/1748-9326/6/4/045509