Active Filters

  • (-) Keywords = biotic interactions
  • (-) WSL Authors ≠ Pohl, Mandy
Search Results 1 - 12 of 12
  • RSS Feed
Select Page
Using eDNA to understand predator-prey interactions influenced by invasive species
Riaz, M., Warren, D., Wittwer, C., Cocchiararo, B., Hundertmark, I., Reiners, T. E., … Nowak, C. (2023). Using eDNA to understand predator-prey interactions influenced by invasive species. Oecologia, 202, 757-767. https://doi.org/10.1007/s00442-023-05434-6
Avian seed dispersal may be insufficient for plants to track future temperature change on tropical mountains
Nowak, L., Schleuning, M., Bender, I. M. A., Böhning-Gaese, K., Dehling, D. M., Fritz, S. A., … Donoso, I. (2022). Avian seed dispersal may be insufficient for plants to track future temperature change on tropical mountains. Global Ecology and Biogeography, 31(5), 848-860. https://doi.org/10.1111/geb.13456
Scale dependency of joint species distribution models challenges interpretation of biotic interactions
König, C., Wüest, R. O., Graham, C. H., Karger, D. N., Sattler, T., Zimmermann, N. E., & Zurell, D. (2021). Scale dependency of joint species distribution models challenges interpretation of biotic interactions. Journal of Biogeography, 48, 1541-1551. https://doi.org/10.1111/jbi.14106
Direct and indirect effects of rorest anthropogenic disturbance on above and below ground communities and litter decomposition
Laigle, I., Moretti, M., Rousseau, L., Gravel, D., Venier, L., Handa, I. T., … Aubin, I. (2021). Direct and indirect effects of rorest anthropogenic disturbance on above and below ground communities and litter decomposition. Ecosystems, 24, 1716-1737. https://doi.org/10.1007/s10021-021-00613-z
Lags in the response of mountain plant communities to climate change
Alexander, J. M., Chalmandrier, L., Lenoir, J., Burgess, T. I., Essl, F., Haider, S., … Pellissier, L. (2018). Lags in the response of mountain plant communities to climate change. Global Change Biology, 24(2), 563-579. https://doi.org/10.1111/gcb.13976
Biotic interactions in species distribution modelling: 10 questions to guide interpretation and avoid false conclusions
Dormann, C. F., Bobrowski, M., Dehling, D. M., Harris, D. J., Hartig, F., Lischke, H., … Kraan, C. (2018). Biotic interactions in species distribution modelling: 10 questions to guide interpretation and avoid false conclusions. Global Ecology and Biogeography, 27, 1004-1016. https://doi.org/10.1111/geb.12759
Spatial predictions at the community level: from current approaches to future frameworks
D'Amen, M., Rahbek, C., Zimmermann, N. E., & Guisan, A. (2017). Spatial predictions at the community level: from current approaches to future frameworks. Biological Reviews, 92(1), 169-187. https://doi.org/10.1111/brv.12222
Glacial survival of trophically linked boreal species in northern Europe
Quinzin, M. C., Normand, S., Dellicour, S., Svenning, J. C., & Mardulyn, P. (2017). Glacial survival of trophically linked boreal species in northern Europe. Proceedings of the Royal Society B: Biological Sciences, 284(1856), 20162799 (9 pp.). https://doi.org/10.1098/rspb.2016.2799
Beta diversity of plants, birds and butterflies is closely associated with climate and habitat structure
Zellweger, F., Roth, T., Bugmann, H., & Bollmann, K. (2017). Beta diversity of plants, birds and butterflies is closely associated with climate and habitat structure. Global Ecology and Biogeography, 26(8), 898-906. https://doi.org/10.1111/geb.12598
Stability and the competition-dispersal trade-off as drivers of speciation and biodiversity gradients
Pellissier, L. (2015). Stability and the competition-dispersal trade-off as drivers of speciation and biodiversity gradients. Frontiers in Ecology and Evolution, 3, 52 (10 pp.). https://doi.org/10.3389/fevo.2015.00052
A novel framework for linking functional diversity of plants with other trophic levels for the quantification of ecosystem services
Lavorel, S., Storkey, J., Bardgett, R. D., de Bello, F., Berg, M. P., Le Roux, X., … Harrington, R. (2013). A novel framework for linking functional diversity of plants with other trophic levels for the quantification of ecosystem services. Journal of Vegetation Science, 24(5), 942-948. https://doi.org/10.1111/jvs.12083
Thermal niches are more conserved at cold than warm limits in arctic-alpine plant species
Pellissier, L., Bråthen, K. A., Vittoz, P., Yoccoz, N. G., Dubuis, A., Meier, E. S., … Guisan, A. (2013). Thermal niches are more conserved at cold than warm limits in arctic-alpine plant species. Global Ecology and Biogeography, 22(8), 933-941. https://doi.org/10.1111/geb.12057