Active Filters

  • (-) Keywords = classification
Search Results 1 - 13 of 13
  • RSS Feed
Select Page
Tercile forecasts for extending the horizon of skillful hydrological predictions
Bogner, K., Chang, A. Y. Y., Bernhard, L., Zappa, M., Monhart, S., & Spirig, C. (2022). Tercile forecasts for extending the horizon of skillful hydrological predictions. Journal of Hydrometeorology, 23(4), 521-539. https://doi.org/10.1175/JHM-D-21-0020.1
Comparison of silhouette-based reallocation methods for vegetation classification
Lengyel, A., Roberts, D. W., & Botta-Dukát, Z. (2021). Comparison of silhouette-based reallocation methods for vegetation classification. Journal of Vegetation Science, 32(1), e12984 (10 pp.). https://doi.org/10.1111/jvs.12984
Countrywide mapping of shrub forest using multi-sensor data and bias correction techniques
Rüetschi, M., Weber, D., Koch, T. L., Waser, L. T., Small, D., & Ginzler, C. (2021). Countrywide mapping of shrub forest using multi-sensor data and bias correction techniques. International Journal of Applied Earth Observation and Geoinformation, 105, 102613 (10 pp.). https://doi.org/10.1016/j.jag.2021.102613
Searching for hidden site factors - species pool and land use blurring Swiss forest vegetation types
Wildi, O. (2021). Searching for hidden site factors - species pool and land use blurring Swiss forest vegetation types. Flora Mediterranea, 31(Spec. Iss.), 43-53. https://doi.org/10.7320/FlMedit31SI.043
Grossflächige Klassifikation von Gebüschwald mit Fernerkundungsdaten
Weber, D., Rüetschi, M., Small, D., & Ginzler, C. (2020). Grossflächige Klassifikation von Gebüschwald mit Fernerkundungsdaten. Schweizerische Zeitschrift für Forstwesen, 171(2), 51-59. https://doi.org/10.3188/szf.2020.0051
Potenzial von Sentinel-2-Satellitendaten für Anwendungen im Waldbereich
Weber, D., Ginzler, C., Flückiger, S., & Rosset, C. (2018). Potenzial von Sentinel-2-Satellitendaten für Anwendungen im Waldbereich. Schweizerische Zeitschrift für Forstwesen, 169(1), 26-34. https://doi.org/10.3188/szf.2018.0026
Review of studies on tree species classification from remotely sensed data
Fassnacht, F. E., Latifi, H., Stereńczak, K., Modzelewska, A., Lefsky, M., Waser, L. T., … Ghosh, A. (2016). Review of studies on tree species classification from remotely sensed data. Remote Sensing of Environment, 186, 64-87. https://doi.org/10.1016/j.rse.2016.08.013
Towards the automatic detection of avalanches in seismic data using Hidden Markov Models
Heck, M., Hammer, C., Van Herwijnen, A., Schweizer, J., & Fäh, D. (2016). Towards the automatic detection of avalanches in seismic data using Hidden Markov Models. In ISSW proceedings. International snow science workshop proceedings 2016 (pp. 322-328).
Amtliche Fernerkundungsdaten in der Forstwirtschaft – Anwendungspotential in Bayern
Straub, C., Stepper, C., Seitz, R., & Waser, L. T. (2015). Amtliche Fernerkundungsdaten in der Forstwirtschaft – Anwendungspotential in Bayern. In A. Wallner & R. Seitz (Eds.), Forstliche Forschungsberichte München: Vol. 214. Der gepixelte Wald – Reloaded (pp. 7-17). Forstwissenschaftliche Fakultät der Universität München.
A continental-scale tool for acoustic identification of European bats
Walters, C. L., Freeman, R. L., Collen, A., Dietz, C., Fenton, M. B., Jones, G., … Jones, K. E. (2012). A continental-scale tool for acoustic identification of European bats. Journal of Applied Ecology, 49(5), 1064-1074. https://doi.org/10.1111/j.1365-2664.2012.02182.x
Classification of debris-flow deposits for hazard assessment in alpine areas
Bardou, E., Ancey, C., Bonnard, C., & Vulliet, L. (2003). Classification of debris-flow deposits for hazard assessment in alpine areas. In D. Rickenmann & C. I. Chen (Eds.), Debris-flow hazards mitigation. Mechanics, prediction, and assessment. Proceedings of the third international conference on debris-flow hazards mitigation. Volume 2 (pp. 799-808). Millpress.
Biogeographical regionalisation of Switzerland based on floristic data: how many species are needed?
Wohlgemuth, T. (1996). Biogeographical regionalisation of Switzerland based on floristic data: how many species are needed? Biodiversity Letters, 3(6), 180-191. https://doi.org/10.2307/2999675
Characterization of <em>Picea abies</em> (L.) Karst. ectomycorrhizas: discrepancy between classification according to macroscopic versus microscopic features
Egli, S., Amiet, R., Zollinger, M., & Schneider, B. (1993). Characterization of Picea abies (L.) Karst. ectomycorrhizas: discrepancy between classification according to macroscopic versus microscopic features. Trees: Structure and Function, 7(2), 123-129. https://doi.org/10.1007/BF00225479