| Zweiphasenmodellierung von Murgängen für die Überprüfung von Schutzmassnahmen
Bartelt, P., McArdell, B., Bühler, Y., & Graf, C. (2024). Zweiphasenmodellierung von Murgängen für die Überprüfung von Schutzmassnahmen. In I. Schalko, D. Farshi, & A. Badoux (Eds.), WSL Berichte: Vol. 155. Fachtagung Wildbäche 2024: Modellierung von Wildbachprozessen (pp. 49-58). https://doi.org/10.55419/wsl:37776 |
| Wie verändern sich Risiken im Alpenraum in Bezug auf hydrologische und gravitative Naturgefahren?
Brunner, M., Jacquemart, M., & Weber, S. (2024). Wie verändern sich Risiken im Alpenraum in Bezug auf hydrologische und gravitative Naturgefahren? In M. Bründl & J. Kleinn (Eds.), WSL Berichte: Vol. 157. Herausforderungen und Lösungsansätze im Umgang mit Risiken (pp. 21-24). https://doi.org/10.55419/wsl:38150 |
| Detecting the impact of climate change on alpine mass movements in observational records from the European Alps
Jacquemart, M., Weber, S., Chiarle, M., Chmiel, M., Cicoira, A., Corona, C., … Stoffel, M. (2024). Detecting the impact of climate change on alpine mass movements in observational records from the European Alps. Earth-Science Reviews, 258, 104886 (29 pp.). https://doi.org/10.1016/j.earscirev.2024.104886 |
| Murgangexperimente mit kleinmassstäblichen Modellen Anwendungen – Herausforderungen – Grenzen
Scheidl, C. (2024). Murgangexperimente mit kleinmassstäblichen Modellen Anwendungen – Herausforderungen – Grenzen. In I. Schalko, D. Farshi, & A. Badoux (Eds.), WSL Berichte: Vol. 155. Fachtagung Wildbäche 2024: Modellierung von Wildbachprozessen (pp. 19-24). https://doi.org/10.55419/wsl:37767 |
| Hybride Murgangmodellierung in der Ingenieurpraxis und in der angewandten Forschung
Tognacca, C. (2024). Hybride Murgangmodellierung in der Ingenieurpraxis und in der angewandten Forschung. In I. Schalko, D. Farshi, & A. Badoux (Eds.), WSL Berichte: Vol. 155. Fachtagung Wildbäche 2024: Modellierung von Wildbachprozessen (pp. 25-32). https://doi.org/10.55419/wsl:37769 |
| Benford's law as debris flow detector in seismic signals
Zhou, Q., Tang, H., Turowski, J. M., Braun, J., Dietze, M., Walter, F., … Lagarde, S. (2024). Benford's law as debris flow detector in seismic signals. Journal of Geophysical Research: Earth Surface, 129(9), e2024JF007691 (17 pp.). https://doi.org/10.1029/2024JF007691 |
| Repose time patterns of debris-flow events in alpine catchments
Heiser, M., Schlögl, M., Spangl, B., Fuchs, S., Rickenmann, D., Zimmermann, M., & Scheidl, C. (2023). Repose time patterns of debris-flow events in alpine catchments. Earth Surface Processes and Landforms, 48(5), 1034-1051. https://doi.org/10.1002/esp.5533 |
| The Illgraben torrent system
McArdell, B. W., & Sartori, M. (2021). The Illgraben torrent system. In E. Reynard (Ed.), World geomorphological landscapes. Landscapes and landforms of Switzerland (pp. 367-378). https://doi.org/10.1007/978-3-030-43203-4_25 |
| The role of the phase shift of fine particles on debris flow behavior: an numerical simulation for a debris flow in Illgraben, switzerland
Uchida, T., Nishiguchi, Y., McArdell, B. W., & Satofuka, Y. (2021). The role of the phase shift of fine particles on debris flow behavior: an numerical simulation for a debris flow in Illgraben, switzerland. Canadian Geotechnical Journal, 58(1), 23-34. https://doi.org/10.1139/cgj-2019-0452 |
| Case report: optimization of topographic change detection with UAV structure-from-motion photogrammetry through survey co-alignment
de Haas, T., Nijland, W., McArdell, B. W., & Kalthof, M. W. M. L. (2021). Case report: optimization of topographic change detection with UAV structure-from-motion photogrammetry through survey co-alignment. Frontiers in Remote Sensing, 2, 626810 (9 pp.). https://doi.org/10.3389/frsen.2021.626810 |
| Mass wasting processes affecting the surface of an alpine talus slope: annual sediment budgets 2009-2018 at Flüelapass, eastern Swiss Alps.
Kenner, R. (2020). Mass wasting processes affecting the surface of an alpine talus slope: annual sediment budgets 2009-2018 at Flüelapass, eastern Swiss Alps. Land Degradation and Development, 31(4), 451-462. https://doi.org/10.1002/ldr.3462 |
| Runoff-generated debris flows: Observation of initiation conditions and erosion–deposition dynamics along the channel at Cancia (eastern Italian Alps)
Simoni, A., Bernard, M., Berti, M., Boreggio, M., Lanzoni, S., Stancanelli, L. M., & Gregoretti, C. (2020). Runoff-generated debris flows: Observation of initiation conditions and erosion–deposition dynamics along the channel at Cancia (eastern Italian Alps). Earth Surface Processes and Landforms, 45(14), 3556-3571. https://doi.org/10.1002/esp.4981 |
| The Swiss flood and landslide damage database: normalisation and trends
Andres, N., & Badoux, A. (2019). The Swiss flood and landslide damage database: normalisation and trends. Journal of Flood Risk Management, 12(S1), e12510 (12 pp.). https://doi.org/10.1111/jfr3.12510 |
| Debris-flow monitoring and warning: review and examples
Hürlimann, M., Coviello, V., Bel, C., Guo, X., Berti, M., Graf, C., … Yin, H. Y. (2019). Debris-flow monitoring and warning: review and examples. Earth-Science Reviews, 199, 102981 (26 pp.). https://doi.org/10.1016/j.earscirev.2019.102981 |
| Small scale debris-flow experiments on run-up height
Rickenmann, D., Karrer, T., McArdell, B., & Scheidl, C. (2019). Small scale debris-flow experiments on run-up height. In J. W. Kean, J. A. Coe, P. M. Santi, & B. K. Guillen (Eds.), Association of environmental and engineering geologists special publication: Vol. 28. Debris-flow hazards mitigation: mechanics, monitoring, modeling, and assessment (pp. 414-420). https://doi.org/10.25676/11124/173191 |
| Characterization of wood-laden flows in rivers
Ruiz-Villanueva, V., Mazzorana, B., Bladé, E., Bürkli, L., Iribarren-Anacona, P., Mao, L., … Wohl, E. (2019). Characterization of wood-laden flows in rivers. Earth Surface Processes and Landforms, 44, 1694-1709. https://doi.org/10.1002/esp.4603 |
| Deciphering debris-flow seismograms at Illgraben, Switzerland
Wenner, M., Walter, F., McArdell, B., & Farinotti, D. (2019). Deciphering debris-flow seismograms at Illgraben, Switzerland. In J. W. Kean, J. A. Coe, P. M. Santi, & B. K. Guillen (Eds.), Association of environmental and engineering geologists special publication: Vol. 28. Debris-flow hazards mitigation: mechanics, monitoring, modeling, and assessment (pp. 222-229). Association of Environmental and Engineering Geologists. |
| Using the monoplotting technique for documenting and analyzing natural hazard events
Conedera, M., Bozzini, C., Ryter, U., Bertschinger, T., & Krebs, P. (2018). Using the monoplotting technique for documenting and analyzing natural hazard events. In J. Simão Antunes Do Carmo (Ed.), IntechOpen. Natural hazards: risk assessment and vulnerability reduction (pp. 107-108). https://doi.org/10.5772/intechopen.77321 |
| Ecosystem-based disaster risk reduction in mountains
Moos, C., Bebi, P., Schwarz, M., Stoffel, M., Sudmeier-Rieux, K., & Dorren, L. (2018). Ecosystem-based disaster risk reduction in mountains. Earth-Science Reviews, 177, 497-513. https://doi.org/10.1016/j.earscirev.2017.12.011 |
| Automatic identification of alpine mass movements by a combination of seismic and infrasound sensors
Schimmel, A., Hübl, J., McArdell, B., & Walter, F. (2018). Automatic identification of alpine mass movements by a combination of seismic and infrasound sensors. Sensors, 18(5), 1658 (19 pp.). https://doi.org/10.3390/s18051658 |