Active Filters

  • (-) Keywords = debris flows
Search Results 1 - 20 of 22
Select Page
Debris-flow entrainment modelling under climate change: Considering antecedent moisture conditions along the flow path
Könz, A. L., Hirschberg, J., McArdell, B. W., Mirus, B. B., de Haas, T., Bartelt, P., & Molnar, P. (2024). Debris-flow entrainment modelling under climate change: Considering antecedent moisture conditions along the flow path. Earth Surface Processes and Landforms, 49(10), 2950-2964. https://doi.org/10.1002/esp.5868
Prise en compte des blocs rocheux et du tri granulométrique pour une analyse plus réaliste des risques torrentiels
Piton, G. (2024). Prise en compte des blocs rocheux et du tri granulométrique pour une analyse plus réaliste des risques torrentiels. In I. Schalko, D. Farshi, & A. Badoux (Eds.), WSL Berichte: Vol. 155. Fachtagung Wildbäche 2024: Modellierung von Wildbachprozessen (pp. 41-47). https://doi.org/10.55419/wsl:37773
Einige offene Fragen bei der Modellierung und Gefahrenbeurteilung von Wildbachprozessen
Rickenmann, D. (2024). Einige offene Fragen bei der Modellierung und Gefahrenbeurteilung von Wildbachprozessen. In I. Schalko, D. Farshi, & A. Badoux (Eds.), WSL Berichte: Vol. 155. Fachtagung Wildbäche 2024: Modellierung von Wildbachprozessen (pp. 7-12). https://doi.org/10.55419/wsl:37763
A new method for detailed discharge and volume measurements of debris flows based on high-frequency 3D LiDAR point clouds; Illgraben, Switzerland
Spielmann, R., & Aaron, J. (2024). A new method for detailed discharge and volume measurements of debris flows based on high-frequency 3D LiDAR point clouds; Illgraben, Switzerland. Engineering Geology, 329, 107386 (16 pp.). https://doi.org/10.1016/j.enggeo.2023.107386
Field validation of the superelevation method for debris-flow velocity estimation using high-resolution lidar and UAV data
Åberg, A., Aaron, J., McArdell, B. W., Kirchner, J., de Haas, T., & Hirschberg, J. (2024). Field validation of the superelevation method for debris-flow velocity estimation using high-resolution lidar and UAV data. Journal of Geophysical Research: Earth Surface, 129(11), e2024JF007857 (18 pp.). https://doi.org/10.1029/2024JF007857
An application of dynamic programming to local adaptation decision-making
Muccione, V., Lontzek, T., Huggel, C., Ott, P., & Salzmann, N. (2023). An application of dynamic programming to local adaptation decision-making. Natural Hazards, 119, 523-544. https://doi.org/10.1007/s11069-023-06135-2
Towards an automated acquisition and parametrization of debris‐flow prone torrent channel properties based on photogrammetric‐derived uncrewed aerial vehicle data
Schmucki, G., Bartelt, P., Bühler, Y., Caviezel, A., Graf, C., Marty, M., … Huggel, C. (2023). Towards an automated acquisition and parametrization of debris‐flow prone torrent channel properties based on photogrammetric‐derived uncrewed aerial vehicle data. Earth Surface Processes and Landforms, 48(9), 1742-1764. https://doi.org/10.1002/esp.5585
Debris flows at Illgraben, Switzerland - from seismic wiggles to machine learning
Walter, F., Chmiel, M., & Hovius, N. (2022). Debris flows at Illgraben, Switzerland - from seismic wiggles to machine learning. Geomechanics and Tunnelling, 15(5), 671-675. https://doi.org/10.1002/geot.202200039
Periglacial landscapes and protection measures above Pontresina
Phillips, M., & Kenner, R. (2021). Periglacial landscapes and protection measures above Pontresina. In E. Reynard (Ed.), World geomorphological landscapes. Landscapes and landforms of Switzerland (pp. 397-407). https://doi.org/10.1007/978-3-030-43203-4_28
Making sense of avulsions on debris-flow fans
Densmore, A. L., de Haas, T., McArdell, B., & Schuerch, P. (2019). Making sense of avulsions on debris-flow fans. In J. W. Kean, J. A. Coe, P. M. Santi, & B. K. Guillen (Eds.), Association of environmental and engineering geologists special publication: Vol. 28. Debris-flow hazards mitigation: mechanics, monitoring, modeling, and assessment (pp. 637-644). https://doi.org/10.25676/11124/173161
Numerical simulation for evaluating the phase-shift of fine sediment in stony debris flows
Uchida, T., Nishiguchi, Y., McArdell, B. W., & Satofuka, Y. (2019). Numerical simulation for evaluating the phase-shift of fine sediment in stony debris flows. In J. W. Kean, J. A. Coe, P. M. Santi, & B. K. Guillen (Eds.), Association of environmental and engineering geologists special publication: Vol. 28. Debris-flow hazards mitigation: mechanics, monitoring, modeling, and assessment (pp. 451-458). https://doi.org/10.25676/11124/173185
Bergsturz Cengalo und Murgänge Bondo: Erfahrungen der kantonalen Fachstelle
Wilhelm, C., Feuerstein, G. C., Huwiler, A., & Kühne, R. (2019). Bergsturz Cengalo und Murgänge Bondo: Erfahrungen der kantonalen Fachstelle. In M. Bründl & J. Schweizer (Eds.), WSL Berichte: Vol. 78. Lernen aus Extremereignissen (pp. 53-66). https://doi.org/10.55419/wsl:19981
Методы дистанционного зондирования и численного моделирования для изучения селевых потоков в бассейнах рек Ахангаран и Тегермеч. Remote sensing techniques and numerical simulation of debris flows in the Akhangaran and Tegermech Rivers basins, using RAMMS
Semakova, E., Alimov, Y., Sichugova, L., Semakov, D., & Graf, C. (2018). Методы дистанционного зондирования и численного моделирования для изучения селевых потоков в бассейнах рек Ахангаран и Тегермеч. Remote sensing techniques and numerical simulation of debris flows in the Akhangaran and Tegermech Rivers basins, using RAMMS software. In S. S. Chernomorets & G. V. Gavardashvili (Eds.), Debris flows: disasters, risk, forecast, protection. Proceedings of the 5th international conference (pp. 571-575). Publishing House "Universal".
Load model for designing flexible steel barriers for debris flow mitigation
Wendeler, C., Volkwein, A., McArdell, B. W., & Bartelt, P. (2018). Load model for designing flexible steel barriers for debris flow mitigation. Canadian Geotechnical Journal, 99, 893-910. https://doi.org/10.1139/cgj-2016-0157
Quantitative reconstruction of late Holocene surface evolution on an alpine debris-flow fan
Schürch, P., Densmore, A. L., Ivy-Ochs, S., Rosser, N. J., Kober, F., Schlunegger, F., … Alfimov, V. (2016). Quantitative reconstruction of late Holocene surface evolution on an alpine debris-flow fan. Geomorphology, 275, 46-57. https://doi.org/10.1016/j.geomorph.2016.09.020
Patterns and controls of sediment production, transfer and yield in the Illgraben
Bennett, G. L., Molnar, P., McArdell, B. W., Schlunegger, F., & Burlando, P. (2013). Patterns and controls of sediment production, transfer and yield in the Illgraben. Geomorphology, 188, 68-82. https://doi.org/10.1016/j.geomorph.2012.11.029
Runout prediction of debris flows and similar mass movements
Scheidl, C., Rickenmann, D., & McArdell, B. W. (2013). Runout prediction of debris flows and similar mass movements. In C. Margottini, P. Canuti, & K. Sassa (Eds.), Landslide science and practice. Volume 3: spatial analysis and modelling (pp. 221-229). https://doi.org/10.1007/978-3-642-31310-3_30
IFKIS-Hydro: an early warning and information system for floods and debris flows
Romang, H., Zappa, M., Hilker, N., Gerber, M., Dufour, F., Frede, V., … Rhyner, J. (2011). IFKIS-Hydro: an early warning and information system for floods and debris flows. Natural Hazards, 56(2), 509-527. https://doi.org/10.1007/s11069-010-9507-8
Ablagerungsverhalten und Reichweiten alpiner Murgänge
Scheidl, C., & Rickenmann, D. (2008). Ablagerungsverhalten und Reichweiten alpiner Murgänge. In M. Mikoš, J. Huebl, & G. Koboltschnig (Eds.), Vol. 1. Protection of populated territories from floods, debrisflow, mass movements, and avalanches. 26 to 30 May 2008. Dornbirn, Vorarlberg, Austria. Conference proceedings. Keynotes, River Basin Management, Torrents (pp. 477-488).
RAMMS - a Modelling System for Snow Avalanches, Debris Flows and Rockfalls based on IDL
Christen, M., Bartelt, P., & Gruber, U. (2007). RAMMS - a Modelling System for Snow Avalanches, Debris Flows and Rockfalls based on IDL. Photogrammetrie, Fernerkundung, Geoinformation (4), 289-292.