Active Filters

  • (-) Keywords = elevated CO2
  • (-) Keywords ≠ soil warming
Search Results 1 - 12 of 12
  • CSV Spreadsheet
  • Excel Spreadsheet
  • RSS Feed
Select Page
Biomass partitioning in a future dry and CO<sub>2</sub> enriched climate: shading aggravates drought effects in Scots pine but not European black pine seedlings
Bachofen, C., Wohlgemuth, T., & Moser, B. (2019). Biomass partitioning in a future dry and CO2 enriched climate: shading aggravates drought effects in Scots pine but not European black pine seedlings. Journal of Applied Ecology, 56, 866-879. https://doi.org/10.1111/1365-2664.13325
Growth and carbon relations of mature <I>Picea abies</I> trees under 5 years of free-air CO<SUB>2</SUB> enrichment
Klein, T., Bader, M. K. F., Leuzinger, S., Mildner, M., Schleppi, P., Siegwolf, R. T. W., & Körner, C. (2016). Growth and carbon relations of mature Picea abies trees under 5 years of free-air CO2 enrichment. Journal of Ecology, 104(6), 1720-1733. https://doi.org/10.1111/1365-2745.12621
Responses of beech and spruce foliage to elevated carbon dioxide, increased nitrogen deposition and soil type
Günthardt-Goerg, M. S., & Vollenweider, P. (2015). Responses of beech and spruce foliage to elevated carbon dioxide, increased nitrogen deposition and soil type. AoB PLANTS, 7, plv067 (21 pp.). https://doi.org/10.1093/aobpla/plv067
Central European hardwood trees in a high-CO<SUB>2</SUB> future: synthesis of an 8-year forest canopy CO<SUB>2</SUB> enrichment project
Bader, M. K. F., Leuzinger, S., Keel, S. G., Siegwolf, R. T. W., Hagedorn, F., Schleppi, P., & Körner, C. (2013). Central European hardwood trees in a high-CO2 future: synthesis of an 8-year forest canopy CO2 enrichment project. Journal of Ecology, 101(6), 1509-1519. https://doi.org/10.1111/1365-2745.12149
Nine years of CO<SUB>2</SUB> enrichment at the alpine treeline stimulates soil respiration but does not alter soil microbial communities
Hagedorn, F., Hiltbrunner, D., Streit, K., Ekblad, A., Lindahl, B., Miltner, A., … Hättenschwiler, S. (2013). Nine years of CO2 enrichment at the alpine treeline stimulates soil respiration but does not alter soil microbial communities. Soil Biology and Biochemistry, 57, 390-400. https://doi.org/10.1016/j.soilbio.2012.10.001
Ten-year exposure to elevated CO<SUB>2</SUB> increases stomatal number of <i>Pinus koraiensis</i> and <i>P. sylvestriformis</i> needles
Zhou, Y., Jiang, X., Schaub, M., Wang, X., Han, J., Han, Sjie, & Li, M. H. (2013). Ten-year exposure to elevated CO2 increases stomatal number of Pinus koraiensis and P. sylvestriformis needles. European Journal of Forest Research, 132(5-6), 899-908. https://doi.org/10.1007/s10342-013-0728-8
Reduced early growing season freezing resistance in alpine treeline plants under elevated atmospheric CO<SUB>2</SUB>
Martin, M., Gavazov, K., Körner, C., Hättenschwiler, S., & Rixen, C. (2010). Reduced early growing season freezing resistance in alpine treeline plants under elevated atmospheric CO2. Global Change Biology, 16(3), 1057-1070. https://doi.org/10.1111/j.1365-2486.2009.01987.x
Litter- and ecosystem-driven decomposition under elevated CO<SUB>2</SUB> and enhanced N deposition in a <I>Sphagnum</I> peatland
Siegenthaler, A., Buttler, A., Bragazza, L., van der Heijden, E., Grosvernier, P., Gobat, J. M., & Mitchell, E. A. D. (2010). Litter- and ecosystem-driven decomposition under elevated CO2 and enhanced N deposition in a Sphagnum peatland. Soil Biology and Biochemistry, 42(6), 968-977. https://doi.org/10.1016/j.soilbio.2010.02.016
Increased N deposition retards mineralization of old soil organic matter
Hagedorn, F., Spinnler, D., & Siegwolf, R. (2003). Increased N deposition retards mineralization of old soil organic matter. Soil Biology and Biochemistry, 35(12), 1683-1692. https://doi.org/10.1016/j.soilbio.2003.08.015
Elevated atmospheric CO&lt;sub&gt;2&lt;/sub&gt; and increased N deposition effects on dissolved organic carbon—clues from &lt;em&gt;δ&lt;/em&gt;&lt;sup&gt;13&lt;/sup&gt;C signature&lt;br /&gt;  
Hagedorn, F., Blaser, P., & Siegwolf, R. (2002). Elevated atmospheric CO2 and increased N deposition effects on dissolved organic carbon—clues from δ13C signature
 . Soil Biology and Biochemistry, 34(3), 355-366. https://doi.org/10.1016/S0038-0717(01)00191-2
Atmospheric CO&lt;sub&gt;2&lt;/sub&gt; enrichment of alpine treeline conifers
Hättenschwiler, S., Handa, I. T., Egli, L., Asshoff, R., Ammann, W., & Körner, C. (2002). Atmospheric CO2 enrichment of alpine treeline conifers. New Phytologist, 156(3), 363-375. https://doi.org/10.1046/j.1469-8137.2002.00537.x
Responses of N fluxes and pools to elevated atmospheric CO<SUB>2</SUB> in model forest ecosystems with acidic and calcareous soils
Hagedorn, F., Bucher, J. B., Tarjan, D., Rusert, P., & Bucher-Wallin, I. (2000). Responses of N fluxes and pools to elevated atmospheric CO2 in model forest ecosystems with acidic and calcareous soils. Plant and Soil, 224(2), 273-286. https://doi.org/10.1023/A:1004831401190