Active Filters

  • (-) Keywords = entrainment
Search Results 1 - 16 of 16
  • RSS Feed
Select Page
Debris-flow entrainment modelling under climate change: Considering antecedent moisture conditions along the flow path
Könz, A. L., Hirschberg, J., McArdell, B. W., Mirus, B. B., de Haas, T., Bartelt, P., & Molnar, P. (2024). Debris-flow entrainment modelling under climate change: Considering antecedent moisture conditions along the flow path. Earth Surface Processes and Landforms, 49(10), 2950-2964. https://doi.org/10.1002/esp.5868
Modelling erosion, entrainment and deposition in cohesive granular flows: application to dense snow avalanches
Ligneau, C., Sovilla, B., & Gaume, J. (2024). Modelling erosion, entrainment and deposition in cohesive granular flows: application to dense snow avalanches. Cold Regions Science and Technology, 219, 104103 (14 pp.). https://doi.org/10.1016/j.coldregions.2023.104103
MoT-PSA: a two-layer depth-averaged model for simulation of powder snow avalanches on three-dimensional terrain
Vicari, H., & Issler, D. (2024). MoT-PSA: a two-layer depth-averaged model for simulation of powder snow avalanches on three-dimensional terrain. Annals of Glaciology. https://doi.org/10.1017/aog.2024.10
Entrainment at multi-scales in shear-dominated and Rayleigh-Taylor turbulence
Brizzolara, S., Mollicone, J. P., van Reeuwijk, M., & Holzner, M. (2023). Entrainment at multi-scales in shear-dominated and Rayleigh-Taylor turbulence. European Journal of Mechanics: B/Fluids, 101, 294-302. https://doi.org/10.1016/j.euromechflu.2023.06.005
RAMMS::EXTENDED - Sensitivity analysis of numerical fluidized powder avalanche simulation in three-dimensional terrain
Glaus, J., Wikstrom Jones, K., Bühler, Y., Christen, M., Ruttner-Jansen, P., Gaume, J., & Bartelt, P. (2023). RAMMS::EXTENDED - Sensitivity analysis of numerical fluidized powder avalanche simulation in three-dimensional terrain. In International snow science workshop proceedings 2023 (pp. 795-802).
Different erosion and entrainment mechanisms in snow avalanches
Li, X., Sovilla, B., Ligneau, C., Jiang, C., & Gaume, J. (2022). Different erosion and entrainment mechanisms in snow avalanches. Mechanics Research Communications, 124, 103914 (8 pp.). https://doi.org/10.1016/j.mechrescom.2022.103914
Constraints on entrainment and deposition models in avalanche simulations from high-resolution radar data
Rauter, M., & Köhler, A. (2020). Constraints on entrainment and deposition models in avalanche simulations from high-resolution radar data. Geosciences, 10(1), 9 (20 pp.). https://doi.org/10.3390/geosciences10010009
Snow entrainment: avalanche interaction with an erodible substrate
Bartelt, P., Christen, M., Bühler, Y., Caviezel, A., & Buser, O. (2018). Snow entrainment: avalanche interaction with an erodible substrate. In International snow science workshop proceedings 2018 (pp. 716-720).
Comparsion of powder snow avalanche simulation models (<em>RAMMS</em> and <em>SamosAT</em>) based on reference events in Switzerland
Schmidtner, K., Bartelt, P., Fischer, J. T., Sailer, R., Granig, M., Sampl, P., … Bühler, Y. (2018). Comparsion of powder snow avalanche simulation models (RAMMS and SamosAT) based on reference events in Switzerland. In International snow science workshop proceedings 2018 (pp. 740-745).
Influence of snow-cover properties on avalanche dynamics
Steinkogler, W., Sovilla, B., & Lehning, M. (2014). Influence of snow-cover properties on avalanche dynamics. Cold Regions Science and Technology, 97, 121-131. https://doi.org/10.1016/j.coldregions.2013.10.002
Sediment transfer patterns at the Illgraben catchment, Switzerland: Implications for the time scales of debris flow activities
Berger, C., McArdell, B. W., & Schlunegger, F. (2011). Sediment transfer patterns at the Illgraben catchment, Switzerland: Implications for the time scales of debris flow activities. Geomorphology, 125(3), 421-432. https://doi.org/10.1016/j.geomorph.2010.10.019
On snow entrainment in avalanche dynamics calculations
Sovilla, B., Margreth, S., & Bartelt, P. (2007). On snow entrainment in avalanche dynamics calculations. Cold Regions Science and Technology, 47(1-2), 69-79. https://doi.org/10.1016/j.coldregions.2006.08.012
The importance of snow entrainment in avalanche dynamics calculations
Sovilla, B., Bartelt, P., & Margreth, S. (2005). The importance of snow entrainment in avalanche dynamics calculations. In K. Elder (Ed.), ISSW proceedings. International snow science workshop proceedings 2004 (pp. 65-73).
Untersuchungen zum Fliess- und Erosionsverhalten granularer Murgänge
Weber, D. (2004). Untersuchungen zum Fliess- und Erosionsverhalten granularer Murgänge. Birmensdorf: Eidg. Forschungsanstalt für Wald, Schnee und Landschaft WSL.
Erosion by debris flows in field and laboratory experiments
Rickenmann, D., Weber, D., & Stepanov, B. (2003). Erosion by debris flows in field and laboratory experiments. In D. Rickenmann & C. I. Chen (Eds.), Debris-flow hazards mitigation. Mechanics, prediction, and assessment. Proceedings of the third international conference on debris-flow hazards mitigation. Volume 2 (pp. 883-894).
Mass and monumentum balance model of a mixed flowing/powder snow avalanche
Turnbull, B., & Bartelt, P. (2003). Mass and monumentum balance model of a mixed flowing/powder snow avalanche. Surveys in Geophysics, 24, 465-477. https://doi.org/10.1023/B:GEOP.0000006077.82404.84